

Engineering and Physical Sciences Research Council

UK Research and Innovation

MAGNETOHYDRODYNAMICS OF PLANETS AND STARS WHAT IDEALISED NUMERICAL SIMULATIONS AND

LABORATORY EXPERIMENTS CAN TEACH US

SUSANNE HORN

Centre for Fluid and Complex Systems, Coventry University

EMFL User Meeting, 11th June 2024

Sunspots and the Solar Dynamo

- \circ sunspots obser since 800 BC
- \circ thought to be so analogues of te volcanoes or to

- \rightsquigarrow George E. Hale[†]: fine structures around sunspots resembling iron filings around a magnet
- \rightarrow Zeeman splitting in the presence of a magnetic fie

†HALE, G.E. On the Probable Existence of a Magnetic Field in Sun-Spots. *Astrophysical Journal* (1908)

Wähler ist eine ausführlichere Mittheilung über das ganze Phänomen und die chemisch-mineralogische Constitution dieser Meteoriten in der Kürze zu erwarten.

XVI: Ueber die Sonnenflecke; aus einem Briefe an Hrn. A. o. Humboldt con Ch. H. F. Peters.

Cambridge, b. Boston 11. Sept. 1855.

 $-$ Vielleicht darf ich es wagen, einige Hauptpunkte von der kleinen Arbeit herzusetzen, mit welcher ich mich hier habilitirte. Im J. 1845 begann ich in Neapel eine Reibe von Messungen aller Sonnenflecke, besonders in der Absicht, zu erforschen, ob auf der Sonnenoberfläche gewisse feste Localitäten existiren, wo diese Flecke vorzugsweise entstehen. Bis Ende 1846, wo eine Unterbrechung in der Reihe eintrat, hatte ich 813 Oerter von 286 Flecken bestimmt, und die Discussion der daraus herreleiteten heliocentrischen Coordinaten führt zu folgenden Resultaten: 1) Die Flecke sind nicht fest, sondern alle haben eine Bewegung gegen den Aequator. 2) Wenn ein Fleck in der Nähe eines anderen ausbricht, so bewegt sich letzterer nach der vom ersteren abgwandten Seite. 3) Die Flecke haben ebenfalls eine Eigenbewegung nach Westen; diefs ist jedoch kein direct erhaltenes Resultat, sondern beruht auf meiner Ansicht vom Ursprung der Sonnenflecke, im Verein mit der Bemerkung, dafs in einem System ein neuer Fleck immer an der Ostseite entsteht. 4) Gewisse Stellen sind vorzugsweise productiv an Flecken: in heliocentr. Breite die zwei Zonen um 21° N und 17° S, in Länge, wenigstens in d. J. 1845 und 1846, vier Stellen. Die Erscheinungen des Entstehens und Wachsthums der Flecke, die der Fackeln, und die obigen Thatsachen, lassen sich bis ins Detail vereinigen, wenn man annimmt, dafs auf dem Sonnenkörper Etwas wie Vulkane existirt, welche gasförmige Materien aussenden. -

Gedruckt bei A. W. Schade in Berlin, Grünstr. 18.

^{*}PETERS, C.H.F. Ueber die Sonnenflecke. *Annalen der Physik* (1855)

Sunspots and the Solar Dynamo

 \circ magnetic forces responsible for nearly all activity and variability of the Sun

- \circ Hale cycle magnetic field back to original polarity (22 years)
- \circ Sir Larmor suggested solar dynamo*

Longitudinally Averaged Magnetic Field

*SIR LARMOR, J. How could a Rotating Body such as the Sun become a Magnet? *Rep. Brit. Assoc. Adv. Sci. A* (1919) †VASIL, G.M. ET AL. The solar dynamo begins near the surface. *Nature* (2024) ‡VASIL, G.M., JULIEN, K. AND FEATHERSTONE, N.A. Rotation suppresses giant-scale solar convection. *Proc. Nat. Acad. Sci.* (2021)

Sunspots and the Solar Dynamo

 \circ magnetic forces responsible for nearly all activity and variability of the Sun

 \circ Hale cycle - magnetic field back to original polarity (22 years)

. . .

 \circ Sir Larmor suggested solar dynamo*

Longitudinally Averaged Magnetic Field

- \rightarrow originating from tachocline or near-surface instability?†
- \rightarrow rapidly rotating "underlayer"? \pm
- \rightarrow why is corona 150 to 450 times hotter than surface?

*SIR LARMOR, J. How could a Rotating Body such as the Sun become a Magnet? *Rep. Brit. Assoc. Adv. Sci. A* (1919) †VASIL, G.M. ET AL. The solar dynamo begins near the surface. *Nature* (2024) ‡VASIL, G.M., JULIEN, K. AND FEATHERSTONE, N.A. Rotation suppresses giant-scale solar convection. *Proc. Nat. Acad. Sci.* (2021)

Planetary Dynamos

- \circ planetary magnetic fields are generated via self-sustained dynamo action
- \rightarrow maintain magnetic field against decay through Ohmic dissipation
- ˝ **rotating turbulent convection in**
- \rightarrow liquid metal cores of rocky planets
- \rightarrow metallic hydrogen envelopes of gas giants
- \rightarrow superionic ice layer of ice giants

Geodynamo

- \circ Earth's liquid metal core: remote, under-constrained systems
- \circ crustal magnetism forms a magnetic curtain
- \rightsquigarrow only observe length scales larger than ~ 1700 km

Dynamo Models and Characteristic Length-Scales ℓ

 $Pr = 1$, $Ra = 10^5$, $Pm = 5$, $Ek = 10^{-3}$

*MagIC, WICHT ET AL., *Astrophys. Source Code Lib.*, <https://magic-sph.github.io/> (2017) †AURNOU & KING, *Proc. R. Soc. A* 473 (2017)

o numerical simulations easily generate dynamos*

Dynamo Models and Characteristic Length-Scales ℓ

- o numerical simulations easily generate dynamos*
- \rightarrow but only for unrealistic values of the control parameters, esp. Ekman numbers†

$$
Ek = \frac{\nu}{2\Omega H^2} = 10^{-3} \rightsquigarrow \ell \propto Ek^{1/3} \sim 1000 \text{ km}
$$

 \rightarrow extrapolation to Earth-like values:

$$
Ek_{\oplus} = 10^{-15} \rightsquigarrow \ell \sim 100\,\text{m}
$$

 $Pr = 1$, $Ra = 10^5$, $Pm = 5$, $Ek = 10^{-3}$

^{*}MagIC, WICHT ET AL., *Astrophys. Source Code Lib.*, <https://magic-sph.github.io/> (2017) †AURNOU & KING, *Proc. R. Soc. A* 473 (2017)

Geodynamo

 \circ Earth's liquid metal core: remote, under-constrained systems \circ crustal magnetism forms a magnetic curtain \rightarrow only observe length scales larger than \sim 1700 km \rightarrow objective: understanding the fundamentals of planetary core turbulence using **idealised models**

Sorting puzzle pieces into a picture. . .

- \circ most important puzzle pieces:
	- ˝ turbulent convection (buoyancy)
	- o rotation (Coriolis)
	- ˝ magnetic fields (Lorentz)

Sorting puzzle pieces into a picture. . .

- \circ most important puzzle pieces:
	- ˝ turbulent convection (buoyancy)
	- o rotation (Coriolis)
	- o magnetic fields (Lorentz)
- \circ methods of solution:
	- \circ theoretical approaches
	- \circ numerical simulations
	- \circ laboratory experiments

From Physical Phenomena to Non-Dimensional Equations

˝ mass conservation:

$$
\boldsymbol{\nabla}\cdot\boldsymbol{u}=0
$$

˝ momentum conservation: d

$$
D_t u = -\nabla p + \sqrt{\frac{Pr}{R \alpha \gamma^3}} \ \nabla^2 u + T \hat{e}_z - \sqrt{\frac{Pr \gamma}{R \alpha E k^2}} \ \hat{e}_z \times u + \sqrt{\frac{Ch^2 Pr \gamma}{R \alpha}} \ (j \times \hat{e}_z)
$$

 \circ entropy (temperature) equation:

$$
D_t T = \sqrt{\frac{1}{RaPr \gamma^3}} \, \boldsymbol{\nabla}^2 T
$$

 \circ induction equation (quasi-static low-Rm)

$$
\nabla \cdot \mathbf{j} = 0
$$

$$
\mathbf{j} = -\nabla \Phi + (\mathbf{u} \times \hat{\mathbf{e}}_z) \quad \left\{ \quad \nabla^2 \Phi = \nabla \cdot (\mathbf{u} \times \hat{\mathbf{e}}_z)
$$

˝ control parameters:

$$
Ra=\frac{\alpha g \Delta H^3}{\kappa \nu}, \quad Pr=\frac{\nu}{\kappa}, \quad \gamma=\frac{R}{H}, \quad Ek=\frac{\nu}{2 \Omega H^2}, \quad Ch=\frac{\sigma B_0^2 H^2}{\rho_0 \nu}
$$

FIGURE 1. A schematic diagram of experimental arrangement. A, Bakelite eylorder; B, stainless-steel plate; C, electric heater; D , non-magnetic ball-bearing; E, stainless-steel rod: F, mereny trough; M, front-surface int C .4

Nakagawa

^{*}NAKAGAWA Y., *Proc. Roy. Soc. A* (1959)

Nakagawa's Experiments in Liquid Mercury*

- \circ magnetic field strength increases from left to right, $B = \{125, 750, 1000, 3000\}$ Gs
- → Ch = {9.47 × 10¹, 3.47 × 10³, 6.17 × 10³, 5.54 × 10⁴}
- \circ constant rotation: Ek = 1.2 \times 10⁻⁴
- \circ bright streaks represent pathlines created by using sand as free surface tracer particles

*NAKAGAWA Y., *Proc. Roy. Soc. A* (1959)

Theoretical Linear Stability Predictions*

 \circ Ek = 1.2 \times 10⁻⁴ fixed, Ch/ Λ varied, test different Ra at fixed Λ = Ch Ek

^{*}HORN, S. & AURNOU, J. M. (2022). *Proc. Roy. Soc. A* 478; MURPHY, J. O., & STEINER J. M. (1975). *Proc. Roy. Soc. Lond. A.* 347

Donna DeEtte Elbert (1928–2019)* †

- \circ started working with Chandrasekhar in 1948
- \circ no formal degree in mathematics (BFA in 1974)
- \rightarrow 30-year collaboration, co-authored 16 papers
- \rightarrow carried out almost all numerical computations
- \rightarrow developed solutions more elegant than Chandrasekhar's original ones
- first to describe coexistence range of large-scale **magnetostrophic and small-scale geostrophic modes**; footnote in *Hydrodynamic and Hydromagnetic Stability* (1961)

^{*}photos courtesy of Dianne Hofner Saphiere, Susan Elbert Steele, Joanne Elbert Kantner

[†]HORN, S. & AURNOU, J.M. The Elbert range of magnetostrophic convection. I. Linear theory. *Proc. Roy. Soc. A* (2022)

Geostrophic Regime (G) - Nakagawa's 1st Case† $\Lambda = 0.0114, Ch = 9.5 \times 10^1, Ra = 1 \times 10^5$ $\ell_{\rm o}$ $\ell_{\rm o}$

$$
\circ
$$
 oscillatory: Ra/Ra_o = 3.3; a_O = 7.921 \Rightarrow n \approx 17^{*}

 $^*\ell \approx \lambda_c/2 \Rightarrow n \approx \Gamma/\ell = \Gamma a_{\rm crit}/\pi$

[†]HORN, S. & AURNOU, J.M.. The Elbert range of magnetostrophic convection. II. Comparing Linear Theory to Nonlinear Low-Rm Simulations; under review (2024)

Elbert's magnetostrophic coexistence range (MG2) - Nakagawa's 2nd Case $\Lambda = 0.42$, Ch = 3.5×10^3 , Ra = 3×10^5 $\ell_{\rm o}$ $\ell_{\rm o}$

MHD of the Sun MHD of Planets MHD in the Lab and in Simulations A Glance to the Future

- ˝ no stationary modes
- o oscillatory: $Ra/Ra_0 = 2.4$; $a_0 = 10.750 \Rightarrow n \approx 27$ \circ wallmodes: Ra/Ra_w = 1.6, a_w = 3.960 \Rightarrow m = $\gamma a_w = 16$

- \circ stationary magnetostrophic modes: Ra/Ra_{ms} = 1.8, a_{ms} = 3.512 \Rightarrow n \approx 9
- o oscillatory: $Ra/Ra_{\Omega} = 2.4$, $a_{\Omega} = 11.501 \Rightarrow n \approx 27$
- \circ wallmodes: Ra/Ra_w = 1.6, a_w = 3.938 \Rightarrow m = $\gamma a_w = 16$

- ˝ no oscillatory modes
- \circ stationary magnetostrophic modes: Ra/Ra_{ms} = 2.7, a_{ms} = 7.941 \Rightarrow n \approx 20
- \circ wallmodes: Ra/Ra_w = 7.1, a_w = 4.010 \Rightarrow m = $\gamma a_w = 16$

Back to Earth . . .

- \rightarrow Elbert range geophysically most relevant
- \rightsquigarrow linear analysis suggest boundary-attached, oscillatory, and geostrophic and magnetostrophic stationary modes are excited at Earth-like values
- \rightsquigarrow \sim 5 orders of magnitude difference between magnetostophic and geostrophic modes

. . . and Other Planets

- \circ linear theoretical predictions carry over to nonlinear, turbulent flows
- \circ liquid metal rotating magnetoconvection is strongly multimodal:
	- \circ oscillatory and boundary-attached modes
	- ˝ **geostrophic, magnetostrophic, and magnetic stationary modes**
- large-scale magnetostrophic mode appears not dominant
- \rightarrow thermal-inertial oscillatory modes punch above their weight
- \circ Elbert Range (MG₂) coincides with planetary estimates

$$
\left[\frac{4}{3}(4\pi^2 E k)^{1/3} < \Lambda < \frac{1}{2}(3^4 \pi^2 E k)^{-1/3}\right]
$$

We need more extreme experiments and DNS of this system!

Back to the Sun - Solar Tornadoes†

- $\circ \sim$ 14 Earths high, lasted 3 days
- o may contribute to solar coronal heating*
- o or is it Alfvén waves?

*KUNIYOSHI ET AL., *Astrophys. J.* 949 (2023) † Image: J. Guenzel, A. McCarthy

Creating Magnetic Tornadoes in the Lab - LEE2 Little Earth Experiment 2 - Sulfuric Acid in a 10 T Magnet

o Centre for Fluid and Complex Systems, operated at LNCMI Grenoble

Alfvén Waves in Liquid Metals - Flowcube

Oscillating diffusive or propagative dynamics? Conditions for emergence of MHD waves at low *Rm*

S. Lalloz, L. Davoust, F. Debray, A. Pothérat

Investigation of the flow: the Flowcube experimental device Aim of the investigation Alfvén waves are ubiquitous in *Figure 1: Close-up view of the vessel's interior* $T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ device initial device in its second by Klein and By Klein environments (solar corona, solar (2010) is a cubic vessel of height **10cm** filled **ra** cores) (Salem et al. 2012; Gillet et al. 20 with a liquid metal allow (or kinematic viscosity) and allow (or kinematic viscosity of kinematic viscosity , \sim These waves are weakly damped in nonlinear interactions. As such, the to a static, uniform and vertical magnetic field . The two Hartmann walls (*a* in Figure 1) and vertical magnetic structure 1, and 1 with these interactions can bear rele unexplained phenomena like the high of an array of injection electric electric electric electric electrodes and electric electrodes and electric electric electric electric elec corona (Grant et al. 2018). Unfortunately, studying Alfvén waves is extremely difficult, because of limit The oscillating flow is forced by injecting at the wide variety of MHD waves existing in bottom wall a current of amplitude ⁰ and Here, we tackle whether Alfvén wave 10 cm experiments can be relevant for environments. More precisely, we
emergence condition and investigate interction electrode $B₀$ emergence condition and investigate the attenuation coefficient a interactions can be obtained. d probe (,) = ln |∇|Τ|∇| can be obtained. **Timescales and non-dimer Quasi-Static (QS) low-***Rm versus Propagative low-Rm approximations* **numbers** Propagative low-*Rm* approximation (≪ 1) Timescales *Figure 2: Attenuation coefficient α against* Τ *in the* -Navier Stokes equations: *QS and Propagative low-Rm approximations* 2 , $\tau_{\eta} = \frac{\hbar^2}{n}$, Viscous an ℎ я a $\tau_{\nu} =$ *,* $+$ $\mathcal{L} = \mathcal{L} \mathcal{L}$, $\mathcal{L} = \mathcal{L} \mathcal{L}$ diffusion t v. η' ÷ IJ B −1 $\tau_{\omega} =$, Oscillation -Induction equations: ℎ $\tau_u =$ r , Advection = + *,* u_0' н. $\tau_j = \frac{\tilde{\rho}}{\sigma B_0{}^2}$, Joule time Potential probe ➔ **propagative dynamics permitted** 2 $R_{\rm eff}$ screen parameters: $R_{\rm eff}$ $\tau_{2D} = \left(\frac{h}{L_{\perp}}\right)$ 2D time (low, Rrp MHT τ_j , perpendicular to B_0) If $R_n \rightarrow 0$ **:** $\Delta b + \partial_{\alpha} u = 0$ $-$ Prop. low- Rm MHI ó Alfvén time $(u_0:$ magnetic ➔ **Quasi-Static approximation** $h\sqrt{\rho\mu_0}$ ℎ +... — 1 $\mu\mu_0$ $=$ $-$

Understanding Tangent Cylinder Physics

Thank you for your attention!