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Sunspots and the Solar Dynamo

o sunspots observed
since 800 BC

o thought to be solar
analogues of terrestrial
volcanoes or tornadoes®

~ George E. Hale': fine structures around sunspots,
resembling iron filings around a magnet

~» Zeeman splitting in the presence of a magnetic field

*PETERS, C.H.F. Ueber die Sonnenflecke. Annalen der Physik (1855)
THALE, G.E. On the Probable Existence of a Magnetic Field in Sun-Spots. Astrophysical Journal (1908)
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Sunspots and the Solar Dynamo
o magnetic forces responsible for nearly all activity and variability of the Sun
o Hale cycle - magnetic field back to original polarity (22 years)
o Sir Larmor suggested solar dynamo*

Longitudinally Averaged Magnetic Field
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Sunspot Area Coverage

“SIR LARMOR, J. How could a Rotating Body such as the Sun become a Magnet? Rep. Brit. Assoc. Adv. Sci. A (1919)

TVASIL, G.M. ET AL. The solar dynamo begins near the surface. Nature (2024)
tVAsIL, G.M., JULIEN, K. AND FEATHERSTONE, N.A. Rotation suppresses giant-scale solar convection. Proc. Nat. Acad. Sci. (2021)
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Sunspots and the Solar Dynamo
o magnetic forces responsible for nearly all activity and variability of the Sun

o Hale cycle - magnetic field back to original polarity (22 years)
o Sir Larmor suggested solar dynamo*

Longitudinally Averaged Magnetic Field

~ originating from tachocline or
near-surface instability ?*

~ rapidly rotating “underlayer’? *

Sunspot Area Coverage ~~ why is corona 150 to 450 times
hotter than surface?

B [Gs]

“SIR LARMOR, J. How could a Rotating Body such as the Sun become a Magnet? Rep. Brit. Assoc. Adv. Sci. A (1919)

TVASIL, G.M. ET AL. The solar dynamo begins near the surface. Nature (2024)
tVAsIL, G.M., JULIEN, K. AND FEATHERSTONE, N.A. Rotation suppresses giant-scale solar convection. Proc. Nat. Acad. Sci. (2021)
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Planetary Dynamos

o planetary magnetic fields are generated via o rotating turbulent convection in
self-sustained dynamo action ~+ liquid metal cores of rocky planets
~» maintain magnetic field against decay through Ohmic ~ metallic hydrogen envelopes of gas giants
dissipation

~» superionic ice layer of ice giants
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Geodynamo

o Earth’s liquid metal core: remote,
under-constrained systems

o crustal magnetism forms a magnetic curtain

~ only observe length scales larger than ~ 1700 km
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Dynamo Models and Characteristic Length-Scales ¢

o numerical simulations easily generate dynamos®

Pr=1,Ra=10° Pm =5, Ek = 1073

*MaglIC, WICHT ET AL., Astrophys. Source Code Lib., https://magic-sph.github.io/ (2017)
TAURNOU & KING, Proc. R. Soc. A 473 (2017)
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MHD of the Sun MHD of Planets MHD in the Lab and in Simulations

Dynamo Models and Characteristic Length-Scales ¢

Ek=10"3
Ek=10"6

Ek=10""

o numerical simulations easily generate dynamos®

~ but only for unrealistic values of the control
parameters, esp. Ekman numberst

_ v
T 20H?2

~ extrapolation to Earth-like values:

Ek =103 ~ Loc EX'/3 ~ 1000 km

Ekg = 107"% ~» { ~ 100m

Pr=1,Ra=10° Pm =5, Ek = 1073

*MaglIC, WICHT ET AL., Astrophys. Source Code Lib., https://magic-sph.github.io/ (2017)
TAURNOU & KING, Proc. R. Soc. A 473 (2017)


https://magic-sph.github.io/
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Geodynamo

o Earth’s liquid metal core: remote,
under-constrained systems

o crustal magnetism forms a magnetic curtain
~ only observe length scales larger than ~ 1700 km

~» objective: understanding the fundamentals of
planetary core turbulence using
idealised models
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Sorting puzzle pieces into a picture...

o most important puzzle pieces:
o turbulent convection (buoyancy)
o rotation (Coriolis)
o magnetic fields (Lorentz)
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Sorting puzzle pieces into a picture...

o most important puzzle pieces:
o turbulent convection (buoyancy)
o rotation (Coriolis)
o magnetic fields (Lorentz)

o methods of solution:
o theoretical approaches
o numerical simulations
o laboratory experiments
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From Physical Phenomena to Non-Dimensional Equations

o mass conservation:
V-u=0

o momentum conservation:

Pr 2 . Pry . Ch2Pry .. .
Diu=—Vp+,| Ray? Vu+Te,—4/ RaTK2 ez><u+«/T (jxe,)
entropy (temperature) equation:
2
T
\/; v

induction equation (quasi-static low-Rm)

o

o

V.j=0 ) x
. R V0=V (uxé,) I
j=—VO+ (uxeée,)
o control parameters:
{
xgAH3 v R v oB2H? i
Ra=292"0 " pr ¥V 2R o Y op= 0T
¢ v e YT 20H2’ Pov
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Frorre 1. A sehovsdie dliageam of experimental arcangeneni. A, Babelie evlocder; £ aainles.seecl plade; O
£ non-uegneliv bab-Gearing, &, statnless-stoed od s £,

“NAKAGAWA Y., Proc. Roy. Soc. A (1959)

LEAA S TN §

77 7
A Bakelite cylinder, R = 6 cm;
B stainless-steel plate; C electric heater;
D non-magnetic ball-bearing;
E stainless-steel rod; F mercury trough;
M front-surface mirror; T camera

lecten: hester;
wwremry trowgh s W, Froot-surlves soirror; 5, rotary shagoer; 3, canaers,
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Nakagawa’s Experiments in Liquid Mercury

o magnetic field strength increases from left to right, B = {125,750, 1000,3000} Gs
~ Ch={9.47 x 101, 3.47 x 103, 6.17 x 103, 5.54 x 10*}
o constant rotation: Ek = 1.2 x 10~*
o bright streaks represent pathlines created by using sand as free surface tracer particles

A=0.01,Ra~1.3x10° A=0.41,Ra~3.7x10° A=0.74,Ra~3.4x10° A=6.48,Ra~8.2x10°

“NAKAGAWA Y., Proc. Roy. Soc. A (1959)
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Theoretical Linear Stability Predictions®

Critical wavenumber Ra it Critical wavenumber a . Lengthscale ratio € it /€geo
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o liquid mercury, Pr = 0.025, aspect ratio " = 8
o Ek = 1.2 x 10~* fixed, Ch/A varied, test different Ra at fixed A = Ch Ek

*HORN, S. & AURNOU, J. M. (2022). Proc. Roy. Soc. A 478; MURPHY, J. O., & STEINER J. M. (1975). Proc. Roy. Soc. Lond. A. 347
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Donna DeEtte Elbert (1928—2019) 1

o started working with Chandrasekhar in 1948
o no formal degree in mathematics (BFA in 1974)
~» 30-year collaboration, co-authored 16 papers
~ carried out almost all numerical computations
~» developed solutions more elegant than Chandrasekhar’s original ones

~ first to describe coexistence range of large-scale
magnetostrophic and small-scale geostrophic modes;
footnote in Hydrodynamic and Hydromagnetic Stability (1961)

*photos courtesy of Dianne Hofner Saphiere, Susan Elbert Steele, Joanne Elbert Kantner
tHORN, S. & AURNOU, J.M. The Elbert range of magnetostrophic convection. I. Linear theory. Proc. Roy. Soc. A (2022)
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Geostrophic Regime (G) - Nakagawa’s 1st Case’

_ _ 1 _ 5 0, o
A=0.0114,Ch=95x 10", Ra=1x10 5 5

10°

G !MG1|MGZ| MG, | M

10° 102 107 10° 10 10° 10°

A vertical velocity u,, topview
o no wallmodes, no stationary modes
o oscillatory: Ra/Ra, =3.3;a0 =7.921 = n~ 17

A /2=~ T/l =Tag/n
THORN, S. & AURNOU, J.M.. The Elbert range of magnetostrophic convection. Il. Comparing Linear Theory to Nonlinear Low-Rm Simulations; under review (2024)
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Elbert’s magnetostrophic coexistence range (MG.) - Nakagawa’s 2nd Case
(

A =042,Ch=35x103Ra=23x10° ‘H :

G !MG1|MG2! MG, | M

10° 102 107 10° 10 10° 10°
A vertical velocity u,, topview
o no stationary modes
o oscillatory: Ra/Ra, = 2.4; ag = 10.750 = n ~ 27
o wallmodes: Ra/Ra,, = 1.6, a,, = 3.960 = m = ya,, = 16
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Elbert’s magnetostrophic coexistence range (MG.) - Nakagawa’s 3rd Case
(

3 6 LU l ms o jLm s
A=0.72,Ch=6.0x10°,Ra=1x10 g Hoe

G !MGL|MGZ! MG, | M

10° 102 10" 10° 10' 10> 10°
A vertical velocity u,, topview
o stationary magnetostrophic modes: Ra/Ran,s = 1.8, apms =3.512=n~ 9
o oscillatory: Ra/Rap = 2.4, ap = 11.501 = n ~ 27
o wallmodes: Ra/Ra,, = 1.6, a,, =3.938 = m =vya,, =16
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Magnetically dominated magnetostrophic range (MG;) - Nakagawa’s 4th Case

4 6 jﬁms Lm&
A=6.6,Ch=55%x10*,Ra=2x10 N O

G !MGL|MGZ! MG, | M

10° 102 107 10° 10 10° 10°
A vertical velocity u,, topview
o no oscillatory modes

o stationary magnetostrophic modes: Ra/Ran,s = 2.7, apms = 7.941 = n ~ 20
o wallmodes: Ra/Ra,, = 7.1, a,, =4.010 = m = ya,, = 16
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Back to Earth ...

Critical wavenumber R a it Critical wavenumber a . Lengthscale ratio £t /€geo
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~ Elbert range geophysically most relevant

~ linear analysis suggest boundary-attached, oscillatory, and geostrophic and magnetostrophic stationary
modes are excited at Earth-like values

~ ~ 5 orders of magnitude difference between magnetostophic and geostrophic modes
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...and Other Planets

o linear theoretical predictions carry over to nonlinear,

turbulent flows
o liquid metal rotating magnetoconvection is strongly multimodal:

o oscillatory and boundary-attached modes
o geostrophic, magnetostrophic, and magnetic
stationary modes
~ large-scale magnetostrophic mode appears not dominant

~ thermal-inertial oscillatory modes punch above their weight

o Elbert Range (MGg) coincides with planetary estimates

§(4n2Ek)‘/3 <A< %(34712Ek)_’/3

~» We need more extreme experiments and DNS of this system!

10*h

10%t

10°f--
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Back to the Sun - Solar Tornadoest

o ~ 14 Earths high, lasted 3 days
o may contribute to solar coronal heating
o oris it Alfvén waves?

*KUNIYOSHI ET AL., Astrophys. J. 949 (2023)
timage: J. Guenzel, A. McCarthy
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Creating Magnetic Tornadoes in the Lab - LEE2
Little Earth Experiment 2 - Sulfuric Acid in a 10 T Magnet

o Centre for Fluid and Complex Systems, operated at LNCMI Grenoble
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Alfvén Waves in Liquid Metals - Flowcube

Oscillating diffusive or propagative dynamics?
Conditions for emergence of MHD waves at low Rm

S. Lalloz, L. Davoust, F. Debray, A. Pothérat

T |
numbers

Aim of the investigation Investigation of the flow: the Flowcube experimental device )
Alfvén waves are ubiquitous in various geo-astrophysical The experimental device initially designed by Klein Figure 1: Close-up view of the vessel’s interior
environments (solar corona, solar wind, magnetised planetary (2010) is a cubic vessel of height h = 10cm filled =
cores) (Salem et al. 2012; Gillet et al. 2010). with a liquid metal alloy (of kinematic viscosity v,
These waves are weakly damped in these media, favouring their || | electric conductivity o and density p) and subjected
nonlinear interactions. As such, the energy transfers associated to a static, uniform and vertical magnetic field By.
with these interactions can bear relevance in understanding yet

; Tike.the high i the soar | | The two Hartmann walls (a n Figure 1) are made up
o (EE AT} of an array of injection electrodes and electric
Unfortunately, studying Alfvén waves in their natural environment i
is extremely difficult, because of limited accessible data and the The oscillating flow is forced by injecting at the
wide variety of MHD waves existing in these environments. bottom wall a current of amplitude I, and
Here, we tackle whether Alfvén waves produced in liquid metal frequency f;
experiments can be relevant for those in geo-astrophysical The flow is diagnosed by measuring the potential
environments. More precisely, we want to determine their gradients V¢ at the top and bottom walls such as
emergence condition and investigate whether non-linear wave the attenuation coefficient =
interactions can be obtained. a(x,y) = n(|9¢lcop/ 17 |o¢) can be obtained.

L
and ive low-R imati A

e

Quasi-Static (QS) low-Rm versus P

P PP

Timescales
oo Viscous and magnetic
vET =T diffusion times.

-1
o= fo Oscillation time
i
Tu = Advection time
u
=L o
P Joule time

B (1)2 5 2D time (L, : lengthscale
D=\G) P perpendicular to By )
_ _ hJypHug Alfvén time (i, : magnetic 1

-Navier Stokes equations:
2 Qo+ (wVu+Vp) = Au+0,b,
= = 7

~Induction equations:

Resistive screen parameter: Ry =
1Ry = 0: Ab+d,u=0

low-Rm (Rm < 1)

Figure 2: Attenuation coefficient O against T, /T, in the
QS and Propagative low-Rm approximations
Ta IbIC 1T

“9:b = Ab+d,u, 0

P propagative dynamics permitted

/T D)

QS low-Rm

Prop. low-Rm MHD|

= Quasi-Static approximation "
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Understanding Tangent Cylinder Physics

Magnetic Taylor-Proudman Constraint explains flows into Tangent s
Cylinders

Alban Pothérat’, Kélig Aujogue’, Rishav Agrawal? and Francois Debray®

D<lalban.potherat@coventry.ac.uk The Livevbadoe Erout
Covent
universi uK, uK, i i CNRS Crenble, F
—{Morivarion
The flow of liquid tained by d mag-
netic field. Without magnetic field, the Taylor-Proudman (TP) constraint due to rapid rotation would suppress
any flow through the Tangent Cylinder (TC), an imaginary surface extruded from the solid core along the ro-
tation axis. anc is broken by flows crossing
the TC[6, 7]. We show that with an axial magnetic field, a Magnetic TP constraint imposes a flow through the TC
f p p
model of the T C
h: inthe TC.
Sm
W R |
J
> Aligned magnetic field, rotation and gravity Q = &, B; = B(x,y,t)é;
© Induction equation not needed !
RoD(u + Vp = EKAu +u x &; + AJ x & + R Té;
J = -Vt Baux &+ QA
Vou=0 V)=
DT = Ra™/2pr 28T
v u aB? v 4‘
Ek=-—s«1 Ro===—=Ek(Ra/Pr)2c1 A= Pr=2
200 20k %0 X Control parameters LEET (H;0,) Earth 10]
U = (a(Ty — Te)gh)'/?  convective free fall velocity Ek=v/(QRXQ)  [5% 105 10 =
Ra = (gaATh3)/(kv) [1.4 x 107 — 2.25 x 107] [102 — 10%]
L —— Re = Ra/Rac — 1 01-20 10°
12 5 8
Rewrlting the Corlolis + Lorentz Force F = 1 x &+AJ x ¢ usinga single solenoldal compound current ¢ H“A fd‘a"z ‘(”HJ NB 'vl‘ “o! IYM
suchthatc; =y + AJ andc; = — |V, - ¢, dz, o /: ) ( E] ['I’ 1
de; = OB, Ro) = ~Ad%(B.) ) + OB, Ro) Pm = v/n 10710 10
Viep=0BoR)  Vioup= ~AV, B+ OB Ro) © LEE1inthe Quasi-Static MHD regime (Rm < 1and Pm < 1) N
MagneticTayl i = u+AJisq dq I =
J canbe3| y, t) along &, with © LEE
current cuw(x, U, t) through its boundaries, global compound charge conservation { ¥V - edz = Oimplies: o LEE2in 1.8
—{ ZoNAL AND RADIAL FLOWS IN LEET'S ELBERT
With static (3th daries, the current ¢, e




Thank you for your attention!





