Evidence for spin-fluctuationmediated superconductivity in *n-*doped cuprates

Radboud Universiteit

Caitlin Duffy EMFL User Meeting University of Nottingham 11/06/2024

caitlin.duffy@lncmi.cnrs.fr

Acknowledgements

Qihong Chen Jinsong Zhang Sijia Tu Kui Jin

Tara Sarkar Rick Greene Roemer Hinlopen

Nigel Hussey

Alessandro Cuoghi

Phase diagram

Similarities…

Similarities…

Similarities…

…and differences

How can we understand these differences between the electron- and hole-doped cuprates?

Combinatorial films

Combi thin films:

- Many doping levels across a single film
- Facilitates very systematic studies

Yuan *et al.,* Nature **602**, 431–436 (2022)

Combinatorial films

Combi thin films:

- Many doping levels across a single film
- Facilitates very systematic studies

Yuan *et al.,* Nature **602**, 431–436 (2022)

Zero-field

Intercept (*T*-linear component) is *x***-dependent**

Slope (*T* ² component) is *x***-independent**

- *H*-linear MR at high fields for $x > x_{AFM}$.
- The decrease in MR as T is decreases implies that the anisotropy of ℓ decreases faster than ℓ itself.

Magnetoresistance

- *H*-linear MR at high fields for $x > x_{AFM}$.
- The decrease in MR as T is decreases implies that the anisotropy of ℓ decreases faster than ℓ itself.

High field slope is always *T*-dependent.

In *p*-doped cuprates, the highfield slope is scale-invariant.

Using the data, can we extract a scattering rate that can model the data itself?

Can this provide hints to the origin of the unusual transport?

What does this tell us about superconductivity in *n*-doped cuprates?

Modelling

Solution of Boltzmann Equation for 2D materials: Shockley-Chambers Tube Integral Formula

$$
\sigma_{ij}=\frac{1}{4\pi^3}\int_{FS}d^2k\frac{1}{\hbar v_F}qv_i\int_0^\infty qv_j(-t)P(t)dt,
$$

$$
P_{\phi}(t) := \exp\left[-\int_0^t \frac{dt'}{\tau(t')}\right]
$$

TB params: Tang *et al*., PRB **104**, 155125 (21)

Constructing the scattering rate

$$
\tau^{-1}(\varphi, T, x) = \tau_{\rm imp}^{-1} + \tau_{\rm HS}^{-1}(\varphi) + g(x)\alpha_1 T \sin^2(2\varphi) + \alpha_2 T^2 \sin^2(2\varphi)
$$

Constructing the scattering rate

Inelastic component – reflects *T*-dependence of zero-field resistivity, including *x*-dependence of *T*-linear component

Simulations *x*=0.159

*x -*dependence

Increasing *x*

40 K

Verifying the Scattering rate: Hall Effect

 R_H changes sign – even in the absence of a FSR

Use **current vertex corrections** to constrain the scattering rate

$$
\vec{J}_k = \frac{1}{1 - \epsilon_k^2} (\vec{v}_k + \epsilon_k \vec{v}_{k \pm Q})
$$

Current (hence velocity) vector at the hotspots is altered due to (π, π) scattering.

Conclusion

- The scattering rate of LCCO is correlated with a coupling parameter which is due to antiferromagnetic spin fluctutations.
- The correlation between the coupling parameter and T_c implies that superconductivity in *n*-doped cuprates is mediated by antiferromagnetic spin fluctuations.
- The differences between *n* and *p*-doped cuprates imply that the same conclusion cannot be drawn for *p*-doped cuprates.

caitlin.duffy@lncmi.cnrs.fr

Extra slides

Zero-field

Derivative shows an *x*-dependent *T*-linear component of the resistivity and an *x*-indendent T^2 component below 70 K

Anisotropic MR…

Fermiology of LCCO from ARPES

Tang *et al., PRB* **104**, 155125 (2021)

Testing other scattering rates

Testing other scattering rates

Comparison between *n*- and *p*-doped

Film 2 – MR

*p-*doped : *H/T* quadrature scaling indicative of incoherent carriers

*n-*doped : *H/T* scaling breaks down at an *x*-independent *T* ~ 70 K

*p-*doped: slope becomes constant at low-*T*

*n-*doped: slope never becomes constant

MR between 30-33 T

In-plane MR

MR is anisotropic – as is expected from a Lorentz-force free configuration.

This, again, is in stark contrast to the *p*-doped cuprates.

In-plane MR

MR is anisotropic – as is expected from a Lorentz-force free configuration.

This, again, is in stark contrast to the *p*-doped cuprates.

This begs the question:

Can the MR of n-doped cuprates be described within a conventional framework?

Current vertex corrections

G. Jenkins *et al.,* PRB **81**, 024508 (2010) H. Kontani*,* Rep. Prog. Phys. **71**, 026501 (2008)

$$
\sigma_{xy} = \frac{-e^3 B}{2\pi^2 \hbar^2 c} \int_0^{2\pi} \ell_x \frac{\partial \ell_y}{\partial \varphi} d\varphi
$$

Scattering between two points causes a modification of the velocity vector at those two points

Current vertex corrections

$$
\sigma_{xy} = \frac{-e^3 B}{2\pi^2 \hbar^2 c} \int_0^{2\pi} \ell_x \frac{\partial \ell_y}{\partial \varphi} d\varphi
$$

$$
\ell \propto \nu_F
$$

\rightarrow A change in v_F causes a change in ℓ

Could this help distinguish between hotspots at the antinodes and hotspots at the AFMBZ boundary?

Current vertex corrections

If employing CVCs can account for the sign change in R_H , we can distinguish between spin and charge…

→ Work in progress!

CVCs

Charge order in *n*-doped cuprates

Experimentally-derived scattering rate

