Free-Kagome

Force-free microstructures reveal distinct switching of chiral transport in AV_3Sb_5 Kagome superconductors

Chunyu (Mark) Guo mqn mps

Max-Planck-Institut für Struktur und Dynamik der Materie

Group leader researcher, Microstructured Quantum Matter, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

All contributors

Experiments:

Chunyu Guo Carsten Putzke Kaize Wang Ling Zhang Philip J. W. Moll

Crystal growth: Dong Chen (CVS) Chandra Shekhar Claudia Felser

High-field experiments: Maarten R. van Delft Steffen Wiedmann

Theory: GL theory on CVS: Glenn Wagner, Mark Fischer, Titus Neupert

DFT: Martin Gutierrez-Amigo, Ion Errea, Maia G. Vergniory

Symmetry in quantum materials

A simple example: mirror symmetry

Mirror symmetry in real life Mirror symmetry in solid states

CG et al., Nature physics 18, 813 (2022)

Symmetry in quantum materials

Symmetry to topology Electronic symmetry **FRESH TWIST ON** OPO ⊁X Moiré lattice/magic angle $\left|\sqrt{\frac{u_{12}}{u_{12}}}\right|$ Spontaneously broken symmetry Barry Bradlyn et al., Nature 547, 298 (2017) Yuan Cao et al., Nature 556, 43 (2018) T. Zhang et al., Nature, 566, 475 (2019) F. Tang et al., Nature, 566, 486 (2019)Adrian Choc, Science 337,1289(2012).

AV₃Sb₅: charge-ordered Kagome superconductors

A Kagome superconductor with charge-order formed below 94 K.

Symmetry breaking in CsV_3Sb_5

Focus on V-kagome net

Decreasing temperature

Symmetry breaking in CsV_3Sb_5

Decreasing temperature

Symmetry breaking in $CsV₃Sb₅$

Decreasing temperature

$AV_3Sb_5:$ Conflicting results

The mysterious T'-phase: spontaneous symmetry-breaking?

Numerous recent development with diverse conclusions:

L Nie et al., Nature 604, 59 (2022) H Chen et al., Nature 599,222 (2021) Q Wu et al., PRB 106,205109 (2022) Y Xiang et al., Nat. Com. 12,6727 (2021) C Guo et al., Nature 611,461 (2022) Y Xu et al., Nat. Phys. 18,1470 (2022) H Zhao et al., Nature 599, 216 (2021) Y Jiang et al., Nat. Mat. 20, 1353 (2021) Y Hu et al., arXiv: 2208.08036v2 (2022) DR Saykin et al., arXiv: 2209.10570 (2022) L Yu et al., arXiv: 2107.10714 (2021)

What's the origin?

……

Fragile electronic ground state in CsV_3Sb_5

Uniaxial strain trivially locks the exciting path…

Magnetic field

Light polarization

Uniaxial Strain/ Lattice distortion

Electronic states **trivially locked by uniaxial strain** due to symmetry breaking.

Uniaxial strain trivially locks the exciting path…

Magnetic field

Light polarization

Atomic engineering

Free-Kagome: designer crystal decoupled from strain-force

Kagome crystal must be set **softly**!

Successful decoupling of strain!

CG et al., Nature 2022 X. Huang et al., PRB 2022 CG et al., npj QM, 2024 CG et al., Nature Physics 2024

Strain reduction >99%

Ready to explore intrinsic Kagome physics!

Field-switchable electronic chirality?

Magnetic field

Light polarization

Uniaxial Strain/ Lattice distortion

Electric magneto-chiral anisotropy (eMChA)

Different mechanism

[2] G. L. J. A. Rikken et al., PRB 99, 245153 (2019). [3] F. Pop et al., Nat. Comms. 5, 3757 (2014). [4] R. Aoki et al., PRL 122, 057206 (2019). [5] T. Yokouchi et al., Nat. Comms. 8, 866 (2017).

Chiral-magnetotransport in $CsV₃Sb₅$

CG et al., Nature 2022

CG et al., Nature 2022

CG et al., Nature 2022

Uniaxial strain trivially locks the exciting path…

Magnetic field

Light polarization

Uniaxial Strain/ Lattice distortion

Electronic states **trivially locked by uniaxial strain** due to symmetry breaking.

Strain-sensitivity

No Chiral transport signature is observed in the strained sample!!!

CG et al., Nature 2022

Atomic engineering

Magnetic field

Light polarization

Atomic engineering

Uniaxial Strain/ Lattice distortion

Comparison to KV₃Sb₅: Similarities

Resistivity, quantum oscillations, DFT… all electronic structure features looks quite similar.

CG et al., npj QM, 2024

Comparison to KV₃Sb₅: Major difference in Chiral transport

Significantly smaller chiral transport signature, and no switching!

Why?

CG et al., npj QM, 2024

Comparison to KV₃Sb₅: Possible origin of the difference

Similarity in electronic structure, yet enhancement of residual resistivity and suppressed AMR peaks:

- Enhanced impurity scatterings
- Impurity as pinning center of chiral domains
- Intrinsic difference between KVS and CVS by electronic chirality

Comparison to KV₃Sb₅: Possible origin of the difference

General phase diagram: 1. Is KVS located at the "wrong" side of the phase diagram? 2. Quantum criticality of orbital magnetism?