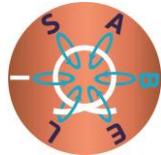


Deliverable Number: 3.4	Due date:
Deliverable Title: Updated Skillmap	Reporting period: RP3
WP number: 3	Issue date: 18/04/2025
Leader Beneficiary: CNRS	Authors: Inès DUPON-LAHITTE
Deliverable type: Report	Reviewers: ISABEL Coordination Board
Dissemination level: Public	

ISABEL

Improving the sustainability of the European Magnetic Field Laboratory

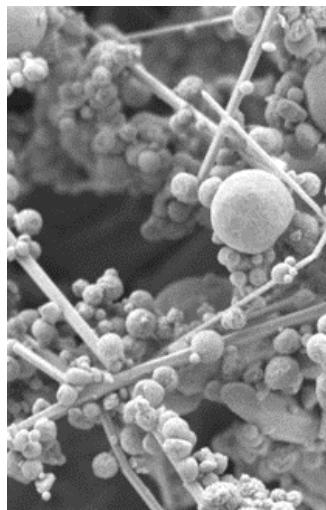
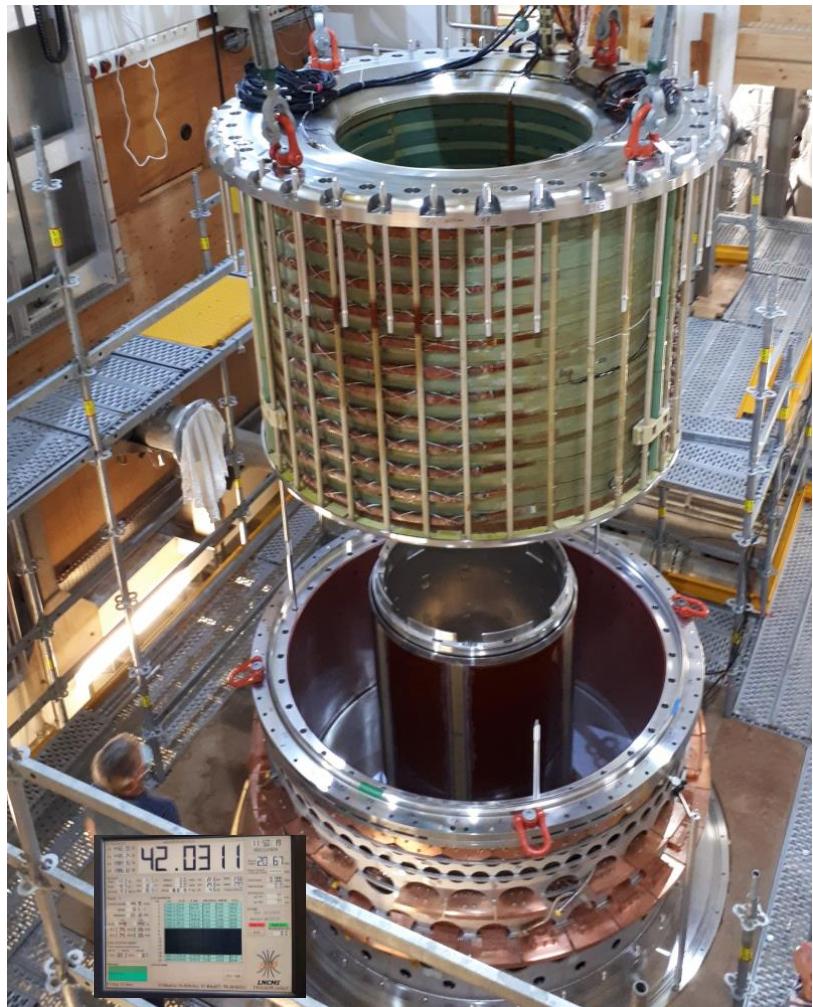
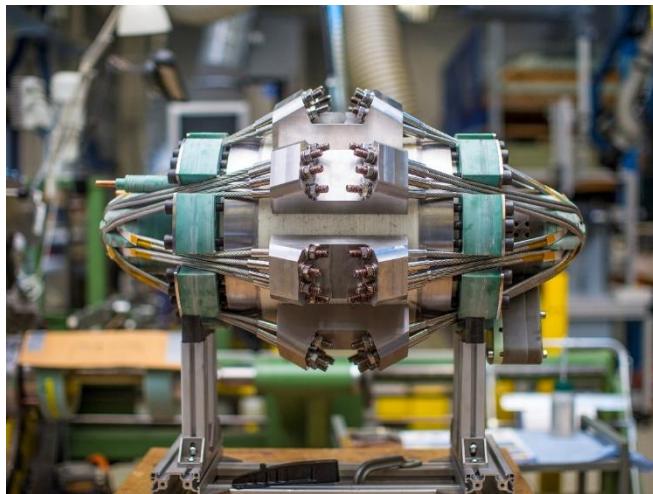
Updated Skillsmap


Start date of the project: 1st November 2020

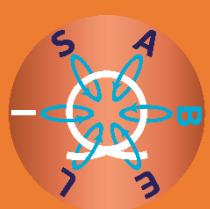
Duration: 60 months

Project Coordinator: Geert Rikken – CNRS LNCMI (P1 - CNRS)

Contact: geert.rikken@lncmi.cnrs.fr




Version	Modifications	Date	Authors
1.0	First draft	18/04/2025	Inès DUPON-LAHITTE
2.0	Final version	28/04/2025	Coordination Board

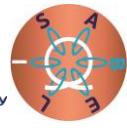
DOCUMENT ABSTRACT

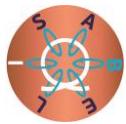

This updated skillmap is the newest version of the cartography of all the knowledge and know-how of the three laboratories of EMFL.

EMFL INDUSTRIAL SKILL MAP

Dr. Aimée SAVOUREY & Inès DUPON-LAHITTE

EUROPEAN MAGNETIC FIELD | 2022 | UPDATED VERSION 2025

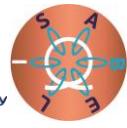


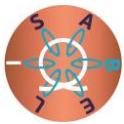


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

THE HIGH FIELD FACILITIES IN EUROPE





This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

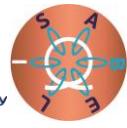
INTRODUCTION

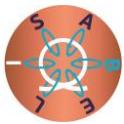
The European Magnetic Field Laboratory (EMFL) was founded in 2015 and provides **the highest possible fields** (both continuous and pulsed) for its researchers.

The EMFL is dedicated to unite, coordinate and reinforce the three existing European high magnetic field laboratories – the Hochfeld-Magnetlabor Dresden (HLD, Germany), the Laboratoire National des Champs Magnétiques Intenses (LNCMI) in Grenoble and Toulouse (France), and the High Magnetic Field Laboratory in Nijmegen (HFML, The Netherlands) – within a single body as a world-leading infrastructure.

This document aims to highlight the skills, expertise and know-how of all EMFL facilities. It has been created to be a useful tool for all potential industrial partners to facilitate the interaction and communication between them and EMFL researchers and engineers.

This skill map covers all available competences of EMFL and is organized in a way to give an easy access to a large industrial community. The document is divided into four parts: Industrial Applications, Scientific Fields, Experiments and Available Equipment. The two first parts provide a short overview of all research and engineering fields in four EMFL facilities. The available information in these areas will be particularly useful for the “non-magnetic” industrial community - the industries who do not deal with magnetic field phenomena. The two other parts “Our Experiments” and “Available Equipment” summarize potential support for the industrial partners that are currently working and familiar with magnetic fields. Here, they will find the detailed description of all realized experiments in EMFL and all specific technical equipment available in the EMFL facilities.


Once our industrial partners identify the needed expertise browsing this skill map, they will have the possibility to ask for further information. Detailed contact information is provided on each page.



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

HOW TO ACCESS INFORMATION

BROWSE BY INDUSTRIAL APPLICATIONS

Here the EMFL skills are gathered by the actual or possible industrial applications such as energy, sensors, healthcare, metrology, etc.

[Classification by industrial application](#)

BROWSE BY SCIENTIFIC FIELDS

Each research axe or team of EMFL is ranged here by the scientific field or scientific domain, such as magnetism, optics, quantum electronics, etc.

[Classification by scientific field](#)

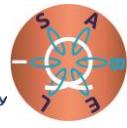
BROWSE BY EXPERIMENTS

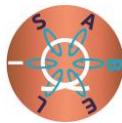
All realised experiments in EMFL are resumed here such as NMR, different spectroscopies, different magnetometries, etc.

[Classification by experiments](#)

BROWSE BY AVAILABLE EQUIPMENT

Here all available equipment are described and will be useful for detailed technical discussions


[Classification by equipment](#)

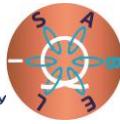


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

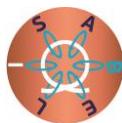
European Magnetic Field Laboratory

BROWSE BY INDUSTRIAL APPLICATIONS

The following table will help the readers to choose the Industrial domains which are close to their activity and business. All EMFL laboratories provided their team overviews and organized them in corresponding industrial domains. You can just click on highlighted cross-sections in this table and you will be automatically redirected to the corresponding detailed team description and contact information.


EMFL TEAMS	INDUSTRIAL APPLICATIONS					
	OPTICS/ELECTRONICS	MATERIALS/CHEMISTRY	HEALTH CARE/ PHARMACEUTICS	MEASUREMENTS/SENSORS	PROCESS	ENERGY/TRANSPORT
HFML NIJMEGEN						
QUANTUM MATERIALS (GROUP SEMICONDUCTOR & NANOSTRUCTURES)		7		7		7
MAGNETO-OPTICAL SPECTROSCOPY ON (NANO)MATERIALS	9	9				9
MAGNETIC MANIPULATION OF MOLECULAR MATERIALS		11	11		11	
UNCONVENTIONAL SUPERCONDUCTIVITY AND QUANTUM CRITICALITY		13		13		13
LOW DIMENSIONAL ELECTRON SYSTEMS (GROUP SEMICONDUCTOR & NANOSTRUCTURES)		15		15		15
LNCMI-GRENOBLE						
HIGH FIELD RESISTIVE MAGNETS		19			19	19
INSTRUMENTATION AND CRYOGENICS		20	20	20		20
NUCLEAR MAGNETIC RESONANCE (NMR)	22	22		22		22
SEMICONDUCTOR AND NANOPHYSICS	24	24		24		
HIGH TEMPERATURE SUPERCONDUCTOR (HTS) DEVELOPMENT		26		26	26	26
43T+ HYBRID MAGNET	28	28	28	28	28	28

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

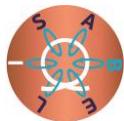


European Magnetic Field Laboratory

EMFL TEAMS	INDUSTRIAL APPLICATIONS	INDUSTRIAL APPLICATIONS						
		OPTICS/ELECTRONICS	MATERIALS/CHEMISTRY	HEALTH CARE/ PHARMACEUTICS	MEASUREMENTS/SENSORS	PROCESS	ENERGY/TRANSPORT	METROLOGY
HZDR-HLD DRESDEN								
THERMOMETRY AND SENSING			<u>33</u>		<u>33</u>		<u>33</u>	
PULSED-POWER SUPPLIES						<u>35</u>	<u>35</u>	
MAGNET FABRICATION						<u>36</u>	<u>36</u>	
ADVANCED CHARACTERIZATION		<u>37</u>	<u>37</u>		<u>37</u>			<u>37</u>
LNCMI-TOULOUSE								
FUNDAMENTAL INTERACTION TESTS IN MAGNETO-OPTICS		<u>41</u>						
HIGH TEMPERATURE SUPERCONDUCTORS			<u>43</u>					
HIGH STRENGTH CONDUCTORS			<u>45</u>			<u>45</u>	<u>45</u>	
PULSED MAGNETS AND GENERATORS						<u>47</u>	<u>47</u>	
CRYOGENICS				<u>49</u>		<u>49</u>		
OPTICAL INSTRUMENTATION		<u>51</u>			<u>51</u>			
RADIOFREQUENCY INSTRUMENTATION					<u>52</u>			
MEGA-GAUSS MAGNETIC FIELD GENERATION		<u>53</u>	<u>53</u>				<u>53</u>	<u>53</u>
QUANTUM ELECTRONICS		<u>54</u>						
NANO-OBJECTS AND SEMI-CONDUCTING NANOSTRUCTURES		<u>55</u>						
QUANTUM CONDUCTORS AND MAGNETS					<u>57</u>			
MAGNETO-CHIRAL ANISOTROPY		<u>59</u>	<u>59</u>					

BROWSE BY SCIENTIFIC FIELD

This table will help you easily navigate inside the scientific competences of EMFL teams. You just need to choose the Scientific Field and then click on the highlighted cross-section of the corresponding EMFL team. On the dedicated page, you will find detailed information and contact information.


EMFL TEAMS	SCIENTIFIC FIELDS									
	OPTICS/MAGNETO-OPTICS	SOLID STATE PHYSICS	QUANTUM ELECTRONICS	MAGNETISM/ELECTRICITY	NANO SCIENCE	CRYOGENICS	ATOMIC PHYSICS	SEMICONDUCTORS	CHEMISTRY/MATERIAL SCIENCE	CONDENSED MATTER PHYSICS
HFML NIJMEGEN										
QUANTUM MATERIALS (GROUP SEMICONDUCTOR & NANOSTRUCTURES)		7		7				7	7	7
MAGNETO-OPTICAL SPECTROSCOPY ON (NANO)MATERIALS	9	9			9			9	9	9
MAGNETIC MANIPULATION OF MOLECULAR MATERIALS	11				11				11	11
UNCONVENTIONAL SUPERCONDUCTIVITY AND QUANTUM CRITICALITY		13	13					13	13	13
LOW DIMENSIONAL ELECTRON SYSTEMS (GROUP SEMICONDUCTOR & NANOSTRUCTURES)		15	15	15	15			15	15	15
LNCMI-GRENOBLE										
HIGH FIELD RESISTIVE MAGNETS				19			19		19	
INSTRUMENTATION AND CRYOGENICS	20			20		20				
NUCLEAR MAGNETIC RESONANCE (NMR)		22						22	22	22
SEMICONDUCTOR AND NANOPHYSICS	24	24			24			24		
HIGH TEMPERATURE SUPERCONDUCTOR (HTS) DEVELOPMENT		26	26	26		26			26	26
43T+ HYBRIDE MAGNET			28	28	28	28		28		
HZDR-HLD DRESDEN										
THERMOMETRY AND SENSING				33		33			33	
PULSED-POWER SUPPLIES	35		35	35	35			35	35	35
MAGNET FABRICATION	36		36		36			36	36	36

EMFL TEAMS	SCIENTIFIC FIELDS	EMFL TEAM								
		OPTICS/MAGNETO-OPTICS	SOLID STATE PHYSICS	QUANTUM ELECTRONICS	MAGNETISM/ELECTRICITY	NANOSCIENCE	CRYOGENICS	ATOMIC PHYSICS	SEMICONDUCTORS	CHEMISTRY/MATERIAL SCIENCE
ADVANCED CHARACTERIZATION		37		37		37		37		37
LNCMI-TOULOUSE										
FUNDAMENTAL INTERACTION TESTS IN MAGNETO-OPTICS	41									
HIGH TEMPERATURE SUPERCONDUCTORS		43		43					43	
HIGH STRENGTH CONDUCTORS				45	45			45	45	
PULSED MAGNETS AND GENERATORS				47			49			
CRYOGENICS										
OPTICAL INSTRUMENTATION	51									
RF INSTRUMENTATION			52					52	52	
MEGA-GAUSS MAGNETIC FIELD GENERATION	53	53		53				53	53	
QUANTUM ELECTRONICS			54				54			
NANO-OBJECTS AND SEMI-CONDUCTING NANOSTRUCTURES	55	55			55			55		
QUANTUM CONDUCTORS AND MAGNETS	57	57								
MAGNETO-CHIRAL ANISOTROPY									59	

HIGH FIELD MAGNET LABORATORY

HFML-FELIX

Contact

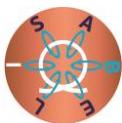
HFML - FELIX

 Toernooiveld 7
6525 ED NIJMEGEN
The Netherlands
 HFML-FELIX@ru.nl
 +31 (0)24 3652525

<https://www.ru.nl/hfml-felix/>

BROWSE BY INDUSTRIAL APPLICATION

OR SCIENTIFIC FIELD



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

QUANTUM MATERIALS

(GROUP SEMICONDUCTOR & NANOSTRUCTURES)

➤ **TEAM INTEREST:** Fundamental investigation of quantum matter under extreme conditions

➤ BRIEF DESCRIPTION

The core of the group's research program is based on studying the electronic, structural and thermodynamic properties of emergent materials including topological semi-metals, correlated electron systems and novel semiconductors from bulk materials to thin films. Characterizing and tuning the properties of novel states of matter is essential for their fundamental understanding and a crucial step towards the design and manufacturing of novel functional devices. Along these lines, the team works on the development of instrumentation that is also made available for external users.

➤ KEY WORDS

- Magnetic fields
- Topological matter
- Correlated systems
- Transport measurements
- Dilatometry
- Uniaxial strain

➤ TEAM ASSETS

Low noise measurements in extreme conditions:

- electrical and thermal transport,
- torque magnetometry,
- thermal expansion and magnetostriction,
- electrical transport under uniaxial strain,
- thermal expansion and magnetostriction under uniaxial strain

➤ COLLABORATIONS

- Open to on-demand R&D studies
- Princeton University (US)
- Aarhus University
- University of Bristol (UK)
- Kuechler Innovative measurement Technology
- Razorbill Instruments

➤ SCIENTIFIC FIELDS

- Fundamental solid states physics
- Topological matter (topological insulators and semi-metals)
- Correlated electron systems (Magnetism and superconductivity)
- Correlated topological matter
- (Novel) semiconductors
- Material characterization

➤ CONTACT

Dr. Steffen WIEDMANN
steffen.wiedmann@ru.nl
+31 24 3653370
HFML-FELIX Nijmegen

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

QUANTUM MATERIALS

(GROUP SEMICONDUCTOR & NANOSTRUCTURES)

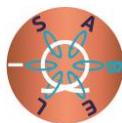
➤ SPECIFIC EQUIPMENT

- Phase sensitive (lock-in) amplifier
- Capacitive dilatometer (32 and 50 mm bore)
- CS100 uniaxial strain cell
- He4, He3, dilution fridge cryostat (base temperature down to 50mK)
- static magnets (magnetic fields up to 38T)

➤ MATERIALS

(from bulk to thin films – 2D)

- Nodal line semimetals (ZrSiS, ...)
- Topological matter (WTe₂, ...)
- Rare earth-tritellruides
- Layered superconductors (NbSe₂, ...)


➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- [J. F. Linnartz *et al.*, PRR 4, L012005 \(2022\).](#)
- [C.S.A. Müller *et al.*, PRR 2, 023217 \(2020\).](#)
- [M. Keshavarz *et al.*, Advanced Materials 31, 1900521 \(2019\).](#)
- [L. Rossi *et al.*, PRL 123, 027205 \(2019\).](#)
- [M. R. van Delft *et al.*, PRL 121, 256602 \(2018\).](#)
- [S. Pezzini *et al.*, Nature Physics 14, 178-183 \(2018\).](#)
- [R. Küchler *et al.*, Review of Scientific Instruments 88, 083903 \(2017\).](#)

<https://www.ru.nl/en/people/wiedmann-s>

MAGNETO-OPTICAL SPECTROSCOPY ON (NANO)MATERIALS

➤ **TEAM INTEREST:** Investigation of (nano)materials in high magnetic fields

➤ **BRIEF DESCRIPTION**

Measuring the optical response of semiconductor nanostructures, molecular materials and magnetic materials in high magnetic fields uncovers their optical, electronic and magnetic properties. Optical techniques are combined with high magnetic fields and low temperatures. Using free beam optics allows for full polarization control in the experiments, down to a time-resolution of 100 femtoseconds and a spatial resolution better than 1 micron.

➤ **TEAM ASSETS**

Optical experiments at high magnetic fields (< 38 T) and low temperatures (> 0.35 K)

- (micro-) Photoluminescence, incl. lifetime expts
- Raman spectroscopy
- Reflection spectroscopy
- Linear birefringence & dichroism
- Magneto-Optical Kerr Effect (MOKE)
- Femtosecond pump-probe experiments

➤ **SCIENTIFIC FIELDS**

- Physics of semiconductor nanostructures, molecular materials and magnetic materials.
- Electric, Optical and Magnetic properties
- Materials characterization
- Photovoltaics

➤ **KEY WORDS**

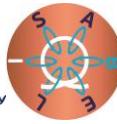
- Magnetic fields
- Optical Spectroscopy
- Semiconductor
- Nanostructures
- Molecular materials

➤ **COLLABORATIONS**

- Many universities and research institutes around the world
- Open to on demand R&D studies

➤ **CONTACT**

Prof. Dr. Peter


CHRISTIANEN

peter.christianen@ru.nl

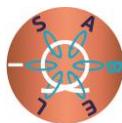
+31 24 365 22 45

HFML-FELIX Nijmegen

MAGNETO-OPTICAL SPECTROSCOPY ON (NANO)MATERIALS

➤ SPECIFIC EQUIPMENT

- Several light & laser sources, c.w. and pulsed
- Wide range of optical spectrometers
- Wide range of detectors and CCD cameras
- He4 and He3 cryostats
- Free beam and fiber optics
- 50 mm and 32 mm bore magnets (< 38 T)


➤ MATERIALS

- 2D Semiconductors (Transition metal dichalcogenides)
- II-VI & perovskite semiconductor colloidal nanocrystals
- III-V & II-VI semiconductor nanostructures
- Organic semiconductors & Perovskites
- Magnetic materials (Ferro-, Ferri- & Antiferromagnets)

➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- Raman (sample: PbMnBO₄), [J. B. Curtis et al., PRR 4, 013004 \(2022\)](#)
- Photoluminescence (sample: InP nanowires), [D. Tedeschi et al., ACS Nano 14, 11613 \(2020\)](#)
- Photoluminescence (sample: TIPS tetracene), [S. L. Bayliss et al., PNAS 115, 5077 \(2018\)](#)
- Femtosecond pump-probe spectroscopy: (sample: GdFeCo), [J. Becker et al., PRL 118, 117203 \(2017\)](#)
(sample: FeRh), [L. M. Kandpal et al., npj spintronics 3, 5\(2025\)](#)
- Microphotoluminescence (sample: WSe₂/MoSe₂ heterostructure), [P. Nagler et al., Nat. Commun. 8, 1551 \(2017\)](#)
- Fluorescence Line narrowing (Sample: colloidal nanocrystals), [A. Grana-dos del Águila et al., ACS Nano 8, 5921–5931 \(2014\)](#)
- Photoluminescence lifetimes (sample: CdSe/CdS Colloidal Nanoplatelets), [E. V. Shornikova et al., Nano Lett. 18, 373–380 \(2018\)](#)

MAGNETIC MANIPULATION OF MOLECULAR MATERIALS

➤ **TEAM INTEREST:** Investigation of magnetic manipulation of “non-magnetic” matter

➤ BRIEF DESCRIPTION

Molecular materials are seemingly nonmagnetic due to the absence of unpaired electrons. Strong fields however induce a weak magnetic moment in these materials, which can be used for manipulation, such as magnetic alignment, structural transformations and magnetic levitation to simulate weightlessness.

➤ TEAM ASSETS

Room temperature optical experiments

- Optical microscopy in Faraday and Voight configurations down to 1 μm
 - Polarized microscopy
 - Fluorescence microscopy
 - Dark-field imaging
 - Schlieren and shadowgraphy
- Confocal microscopy
 - Fluorescence autocorrelation
 - Fluorescence lifetime imaging
- Polarized UV/VIS spectroscopy
- Linear birefringence and dichroism
- Circular dichroism and birefringence

➤ SCIENTIFIC FIELDS

- Supramolecular chemistry
- Molecular materials
- Magnetic manipulation
- Soft condensed matter

➤ KEY WORDS

- Magnetic fields
- Molecular matter
- Optics
- Magnetic levitation
- Magnetic alignment
- Magnetic manipulation

➤ COLLABORATIONS

- Systems chemistry, IMM, Radboud University
- Institute for Technology-Inspired Regenerative Medicine,
- Maastricht University
- Laboratory for Biotechnological Research '3D Bioprinting Solutions', Moscow, Russia.

➤ CONTACT

Dr. Hans ENGELKAMP
hans.engelkamp@ru.nl
+31 24 3653367
HFML-FELIX Nijmegen

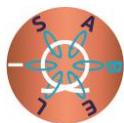
This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

MAGNETIC MANIPULATION OF MOLECULAR MATERIALS

➤ MATERIALS

- Block copolymers
- Polymersomes
- Liquid crystals
- Molecular crystals


➤ SPECIFIC EQUIPMENT

- Several light sources
- Sensitive optical detectors and cameras
- Autocorrelators
- Photo-elastic modulators
- Lock-in amplifiers

➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- [A. M. van Silfhout et al., J Phys Chem Lett 11, 5908-5912, 1804 \(2020\)](#)
- [V. A. Parfenov et al. Biofabrication 12, 045022 \(2020\)](#)
- [R. S. M. Rikken et al., Nat. Commun. 7, 12606 \(2016\)](#)
- [J. Potticary et al., Nat. Commun. 7, 11555 \(2016\)](#)
- [N. Micali et al., Nat. Chem. 4, 201-207 \(2012\)](#)

UNCONVENTIONAL SUPERCONDUCTIVITY AND QUANTUM CRITICALITY

➤ **TEAM INTEREST:** Link between criticality, superconductivity and strange metallicity

➤ BRIEF DESCRIPTION

Unconventional superconductors order (often magnetically) *before* superconductivity sets in. Suppressing this order to zero Kelvin, electrons begin to fluctuate quantum mechanically between the ordered and disordered phases. Just above this so-called *quantum critical point*, the resistivity acts in a highly anomalous way. Moreover, these critical fluctuations may also induce or promote pairing. Hence, studying the transport and thermodynamic properties of this 'strange' metal might help to identify the interaction that causes the superconductivity.

➤ KEY WORDS

- Magnetic fields
- Exotic superconductivity
- Quantum criticality
- Transport and thermodynamic properties
- Strange metallicity

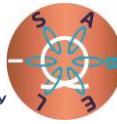
➤ TEAM ASSETS

Low noise measurements in extreme conditions:

- electrical and thermal transport
- magnetization
- ac susceptibility
- thermo-electricity
- torque magnetometry
- specific heat
- high pressures
- ultrafast current pulses

➤ COLLABORATIONS

- University of Bristol (UK)
- University of Oxford (UK)
- Berkeley (USA)
- LNCMI-G (France)
- Kyoto (Japan)


➤ SCIENTIFIC FIELDS

- Fundamental solid-state physics
- Magnetism and superconductivity
- Materials characterization

➤ CONTACT

Prof. Nigel HUSSEY
nigel.hussey@ru.nl
HFML-FELIX Nijmegen

UNCONVENTIONAL SUPERCONDUCTIVITY AND QUANTUM CRITICALITY

➤ SPECIFIC EQUIPMENT

- He-4, He-3, dilution fridge cryostat (base temperature down to 50 mK)
- High-resolution ac susceptibility
- Quantitative magnetization measurements
- Piezo-cantilevers and torque magnetometers
- Phase sensitive lock-in detection techniques
- Oscilloscope (1GHz, 12bits)
- Relaxation calorimetry
- Piston and diamond anvil pressure cells

➤ MATERIALS

- High- T_c cuprates (crystals and thin films)
- Skutterudites
- CeCoIn₅ and derivatives
- Li_{0.9}Mo₆O₁₇
- FeSe_{1-x}S_x
- URhGe and derivatives
- Organic conductors
- Multiferroics
- Infinite-layered nickelates
- Oxide heterostructures
- Others

➤ RECENT PUBLICATIONS

- [S. Pezzini et al., Nature Physics 14, 178 \(2018\)](#)
- [D. Maryenko et al., Nat. Comm. 9, 4356 \(2018\)](#)
- [A. I. Coldea et al., npj Quant. Mat. 4, 2 \(2019\)](#)
- [S. Licciardello et al., Nature 567, 213 \(2019\)](#)
- [S. Kasahara et al., PRL 124, 107001 \(2020\)](#)
- [S. Mishra et al., PRL 126, 016403 \(2021\)](#)
- [C. Putzke et al., Nature Physics 17, 826 \(2021\)](#)
- [J. Ayres et al., Nature 595, 661 \(2021\)](#)

LOW DIMENSIONAL ELECTRON SYSTEMS

(GROUP SEMICONDUCTOR & NANOSTRUCTURES)

➤ **TEAM INTEREST:** Fundamental understanding of semiconducting, superconducting and magnetic materials using high magnetic fields and low temperatures.

➤ BRIEF DESCRIPTION

The group carries out versatile research programme addressing the electronic properties of nanostructures and low-dimensional materials such as semiconductor heterostructures (II-V based and complex oxides), 2D materials (graphene and TMDC) and (magnetic) nanostructures. We develop and apply a variety of techniques such magneto transport, magnetometry and infrared spectroscopy to uncover new fundamental properties of emerging systems in view of fundamental physics and possible application perspectives.

➤ KEY WORDS

- High magnetic fields
- Low temperatures
- Semiconductors
- Magnetic materials
- Magneto-transport
- Magnetization
- Thermodynamic properties
- THz spectroscopy

➤ TEAM ASSETS

- Magneto-transport in tilted magnetic field and a wide temperature range (50 mK – 400 K).
- Time resolved resistivity measurements
- Far infrared transmission and resistively detected resonances in semiconducting and magnetic nanostructures
- Magnetometry in high magnetic fields (VSM, torque)
- Thermopower and thermal conductivity

➤ COLLABORATIONS

Industrial

- Leiden cryogenics (NL)
- Paragraf (UK)
- NOVIOTECH (NL)

Scientific (selection)

- RWTH Aachen
- University of Groningen
- ETH Zürich
- Basque Center on Materials
- Maglab Los Alamos
- PTOLEMY collaboration

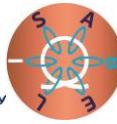
➤ SCIENTIFIC FIELDS

- Condensed matter science
- Semiconductors
- Superconductivity
- Magnetism
- Low-dimensional electron systems
- 2D materials
- Magnetic materials

➤ CONTACT

Prof. Dr. Uli ZEITLER

uli.zeitler@ru.nl


+31 24 3653061

HFML-FELIX Nijmegen

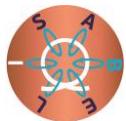
<https://www.ru.nl/en/people/zeitler-u>

LOW DIMENSIONAL ELECTRON SYSTEMS

(GROUP SEMICONDUCTOR & NANOSTRUCTURES)

➤ SPECIFIC EQUIPMENT

- $^4\text{He}/^3\text{He}$ dilution refrigerator (0.05 to 4 K)
- ^3He system (0.3 to 30 K)
- Variable temperature inserts (1.5 to 400 K)
- DC resistive magnet up to 38 T
- VSM & torque magnetometers
- Free electron lasers (FIR)


➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- [Z. Lei *et al.*, PRR **4**, 013039 \(2022\)](#)
- [L. C. J. M. Peters *et al.*, PRR **3**, L042042 \(2021\)](#)
- [K. Rubi *et al.*, PRR **3**, 033234 \(2021\)](#)
- [M. Schmitz *et al.*, 2D Mater. **7**, 041007 \(2020\)](#)
- [S. Pezzini *et al.*, PRB **99**, 045440 \(2019\)](#)
- [D. Maryenko *et al.*, Nat. Commun. **9**, 4356 \(2018\)](#)
- [Jianming Lu *et al.*, PNAS **115** \(2018\)](#)
- [T. Khouri *et al.*, PRL **117**, 256601 \(2016\)](#)

➤ MATERIALS

- Convectional and unconventional 3D semiconductors
- Heterostructures: III-V and oxides
- 2D materials
- Magnetic materials, molecular magnets
- Superconductors

LABORATOIRE NATIONAL DES CHAMPS MAGNETIQUES INTENSES – GRENOBLE LNCMI-GRENOBLE

Contact

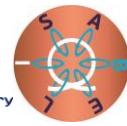
25, avenue des Martyrs

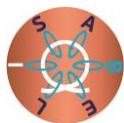
BP 166

38042 Grenoble Cedex 9

direction@lncmi.cnrs.fr

+33 (0)4.76.88.10.48


<https://lncmi.cnrs.fr/>



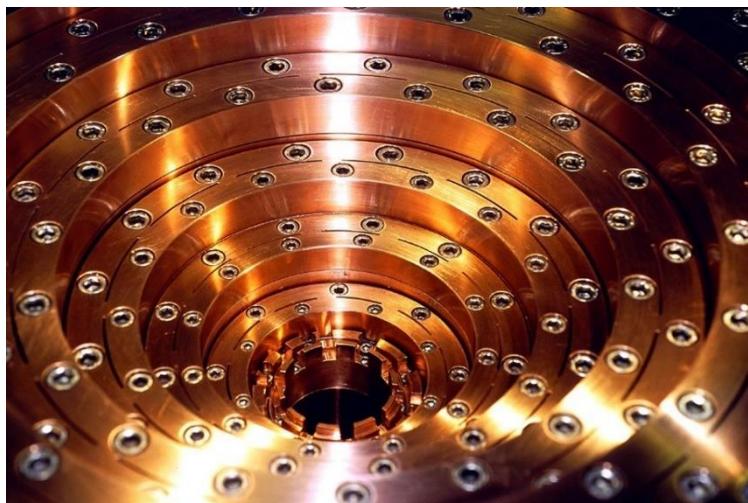
This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

EMFL
European Magnetic Field Laboratory

HIGH FIELD RESISTIVE MAGNETS

➤ **TEAM INTEREST:** Design and fabrication of continuous high field magnets and energetic systems

➤ **BRIEF DESCRIPTION**


We develop copper alloy-based magnets for high magnetic fields or high magnetic field gradients. These developments include thermal, mechanical and electromagnetic studies and magnet fabrication. Our expertise extends to material choice and magnet fabrication.

➤ **TEAM ASSETS**

- In-house magnets productions for high continuous magnetic fields (today up to 37 T)
- Design and fabrication for specific needs (X-Ray, Neutrons, Ion Source, levitation)
- Optimization of energetic systems (high heat fluxes, heat recovery)
- Copper alloy development for specific use

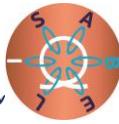
➤ **SPECIFIC EQUIPMENT**

- 30 MW power supply
- Hydraulic system for 30 MW cooling
- 7 high field magnets for experimentations
- Design office & workshop for coil conception and production

➤ **KEY WORDS**

- Continuous magnets
- Energetic system

➤ **COLLABORATIONS**


- Energy Pool
- ICB-Univ. Tech. Bel-fort-Montbéliard
- High Engineering school on Water Energy & Environment (ENSE3-Univ. Grenoble Alpes)

➤ **PUBLICATIONS**

- [J. Fitó et al., Energy Conversion and Management 211, 112753 \(2020\)](#)
- [O. Jay et al., "Cold Spray Manufacturing for Structural Materials for High Field Magnet Production" MSF 941, 1540 \(2018\)](#)

➤ **CONTACT**

Dr. François DEBRAY
francois.debray@lncmi.cnrs.fr
LNCMI GRENOBLE

INSTRUMENTATION AND CRYOGENICS

➤ **TEAM INTEREST:** Experimental devices and techniques in high continuous magnetic fields

➤ **BRIEF DESCRIPTION**

The LNCMI instrumentation team supports and conducts developments of scientific instrumentation, experimental techniques and cryogenic devices compliant with the particular constraints of a high magnetic field environment.

➤ **TEAM ASSETS**

- Access to low temperatures (20 mK)
- Metrology service for thermometers in high magnetic field (36 T, 1.2 K)
- Metrology service for precise magnetic field characterisation: absolute field values, spatial field mapping, temporal field characterisation by Hall, Pick-up and Nuclear Magnetic Resonance
- Design and development of experimental setups for measurements in high magnetic field and/or low temperatures
- Software development (data recording and analysis) and simulation of material's properties in magnetic field
- Magneto-mechanical device characterisation in high magnetic fields, strong magnetic field gradients and stray fields

➤ **SCIENTIFIC FIELDS**

- Cryogenics, Mechanics, Mechatronics
- Metrology, Magnetometry
- Optics

➤ **MATERIALS**

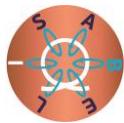
- Non-magnetic metals (stainless steel, titanium)
- High performance composite compounds (e.g. Torlon)
- Low temperature bonding compounds and techniques
- μm to mm sized sensors and electrical wires

➤ **KEY WORDS**

- Low temperatures
- Temperature and magnetic field metrology
- Design of instruments
- Data recording and analysis

➤ **COLLABORATIONS**

- LNCMI and EMFL research and engineering teams.
- External scientific users.
- External industrial users.
- Cryogenic, vacuum, instrument and material suppliers.


➤ **PUBLICATIONS AND ADDITIONAL INFORMATION**

Examples for recent developments and industrial collaborations available upon request.

➤ **CONTACT**

Dr. Steffen KRÄMER
steffen.kramer@lncmi.cnrs.fr
+ 33 (0)4 76 88 74 44
LNCMI Grenoble

INSTRUMENTATION AND CRYOGENICS

➤ SPECIFIC EQUIPMENT

- Low temperature environment (^4He , ^3He and dilution refrigerator, 20 mK to 300 K)
- Instruments and sensors for temperature recording and control (20 mK to 300 K)
- Instruments and sensors for field recording: NMR, Hall and Pick-up devices
- Goniometers and piezo-driven devices for rotation and positioning
- General purpose instruments and software for data recording: High precision current and voltage sources and recording devices, Lock-In amplifiers, oscilloscopes, dynamic signal analyser, filters
- 3D printing (polymere-based)

NUCLEAR MAGNETIC RESONANCE (NMR)

➤ TEAM INTEREST: Ultra-high-field NMR investigations

➤ BRIEF DESCRIPTION

Nuclear magnetic resonance (NMR), well known for its application in medical imaging (MRI), and widely used for determining molecular structures in chemistry and biology, is also an extraordinarily powerful microscopic probe of the electronic properties. At LNCMI, NMR is performed in particularly intense magnetic fields, used to induce and study new quantum phases of matter and to control the transitions between them. These field-induced phenomena occur in strongly correlated electron systems, which are the principal subject of fundamental research in Solid State Physics.

➤ TEAM ASSETS

Broad-band NMR measurements in extreme conditions of ultra-high magnetic field, very low temperature and high pressure.

➤ SCIENTIFIC FIELDS

Fundamental solid states physics:

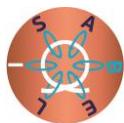
- Quantum magnetism
- High temperature superconductors
- Exotic, field-induced superconducting states
- Heavy Fermions

Chemistry :

- Paramagnetic Relaxation Enhancement for MRI contrast agents
- Ultra-high field NMR

➤ KEY WORDS

- Magnetic fields
- NMR
- Quantum Magnetism
- High temperature superconductivity
- Strongly correlated systems


➤ COLLABORATIONS

- Open to on demand R&D studies
- ETH Zürich
- MPI Stuttgart
- UBC Vancouver
- Inst. Néel, Grenoble
- JAEA, Japan
- Karlsruhe Institute of Technology

➤ CONTACT

Dr. Mladen HORVATIĆ
mladen.horvatic@lncmi.cnrs.fr
+33 (0)4 76 88 74 43
LNCMI GRENOBLE

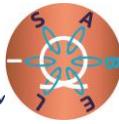
NUCLEAR MAGNETIC RESONANCE (NMR)

➤ MATERIALS

- Quantum antiferromagnets: insulating compounds described as quasi-one-dimensional and quasi-two-dimensional spin systems
- High-Tc superconductors: Cu-oxide and Fe-based materials
- Heavy Fermions: UTe_{29} , UCoGe, URhGe, $Ce_3Pd_2OSi_6$
- Topological materials, “Quantum Well” heterostructures, single-molecule magnets
- Paramagnetic relaxation enhancement (PRE): large-size paramagnetic molecules in aqueous solution, *e.g.* paramagnetic polyoxometalates.

➤ SPECIFIC EQUIPMENT

- Broad-band NMR spectrometers
- RF electronics
- Cryogenic NMR probes
- Sample rotators, pressure cells
- He^4 , He^3 and dilution-refrigerator cryostats (from room temperature down to 50 mK)
- Variable-field magnets (superconducting, resistive and hybrid magnets) employed for high-field NMR


➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- Overview: [C. Berthier *et al.*, C. R. Phys. 18, 331 \(2017\)](#)
- Quantum magnets: [A. Orlova *et al.*, PRL 121, 177202 \(2018\)](#); [M. Horvatić *et al.*, PRB 101, 220406\(R\) \(2020\)](#); [S. Allenspach *et al.*, PRR 3, 023177 \(2021\)](#)
- High-Tc superconductors: [R. Zhou *et al.*, PNAS 114, 13148 \(2017\)](#); [M. Frachet *et al.*, Nat. Phys. 16, 1064 \(2020\)](#); [I. Vinograd *et al.*, Nat. Commun. 12, 3274 \(2021\)](#)
- Organic conductors: [H. Mayaffre *et al.*, Nat. Phys. 10, 928 \(2014\)](#)
- Heavy Fermions: [Y. Tokunaga *et al.*, PRL 114, 216401 \(2015\)](#)
- Longitudinal Spin Fluctuations: [Y. Tokunaga *et al.*, PRL 131, 226503 \(2023\)](#)
- Paramagnetic relaxation enhancement (PRE): [A. C. Venu *et al.*, Molecules 26, 7481 \(2021\)](#)

<https://nmr-ncmi.wixsite.com/nmrgroup/publications>

SEMICONDUCTOR AND NANOPHYSICS

➤ **TEAM INTEREST:** We are interested in low energy excitations and in the effects of interactions in low dimensional condensed matter systems (semiconductor nanostructures, two dimensional materials, topological semimetals). We investigate these systems using optical spectroscopy methods combined with high magnetic fields.

➤ BRIEF DESCRIPTION

Magneto-optical spectroscopy with micrometre spatial resolution in extreme environments of low temperature, high magnetic fields and high pressure. We are interested in the effects of interactions (electron-electron, electron-phonon, magnon-phonon).

➤ KEY WORDS

- High magnetic fields
- Low-dimensional systems
- Magneto-optics
- Low temperature

➤ TEAM ASSETS

- Bulk layered materials (semiconductors, semimetals, magnetic)
- Two dimensional materials and their heterostructures (encapsulated in hBN, hetero-multilayers)
- Semiconductor nanostructures (quantum wells and quantum dots)
- Spatially resolved optical spectroscopy in extreme environments

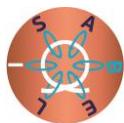
➤ COLLABORATIONS

- Tech. Uni. Munich
- Uni. of Strasbourg
- Uni. of Fribourg
- Uni. of Warsaw
- Uni. of Prague
- Uni. of Manchester
- C2N-CNRS

➤ SCIENTIFIC FIELDS

- Semiconductor physics
- Two dimensional materials
- Dirac and Weil semimetals
- Magnetic systems

➤ CONTACT


Dr. Clément FAUGERAS
clement.faugeras@lncmi.cnrs.fr

Dr. Milan ORLITA
milan.orlita@lncmi.cnrs.fr
LNCMI GRENOBLE

➤ MATERIALS

- Semiconductor nanostructures
- Two dimensional materials (semimetals, semiconductors, magnetic materials, charge density waves/periodic lattice distortion)
- Topological matter
- Molecular solids

SEMICONDUCTOR AND NANOPHYSICS

➤ SPECIFIC EQUIPMENT

- 16 T and 14 T superconducting magnets
- Micro-optical set-ups for low temperature – high magnetic fields visible/NIR spectroscopy (Photoluminescence, Reflectance, PLE, Raman scattering)
- Triple grating spectrometer for low energy Raman scattering
- Time resolved photoluminescence (TRPL) with a femtosecond laser (515 nm)
- Supercontinuum laser
- Diamond Anvil Cells for high pressures (up to 10 GPa)
- Transmission and Reflectivity FTIR set-up

➤ PUBLICATIONS AND ADDITIONAL INFORMATION

<https://lncmi.cnrs.fr/la-recherche/semiconducteur-nanophysics/la-recherche-2/publications/>

https://hal.science/search/index/?q=*&authIdPerson_i=184793

https://hal.science/search/index/?q=*&authIdPerson_i=738902

HIGH TEMPERATURE SUPERCONDUCTOR (HTS) DEVELOPMENT

➤ **TEAM INTEREST:** Characterization and use of high temperature superconductors (HTS) (wires, tapes or coils) in high magnetic field.
Design and fabrication of HTS insert for very high field magnets (> 30 T).

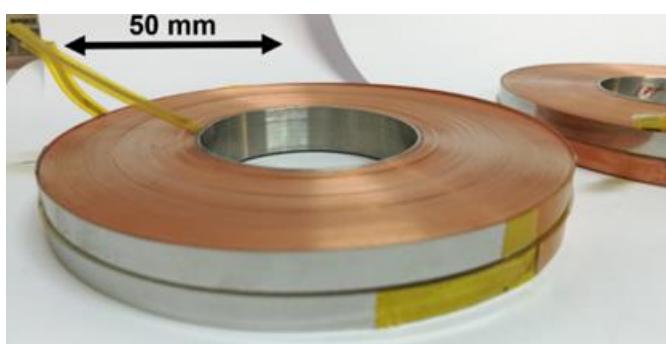
➤ BRIEF DESCRIPTION

The implementation of several test benches through collaborations and visitor support while using the unique field configurations available at LNCMI for the functional characterizations of HTS wires, tapes and coils or sub-elements have paved the way for further development of the HTS technology. We are now engaged in the race towards very high field all-superconducting user magnets.

➤ TEAM ASSETS

- Functional characterisations of HTS wires, tapes and coils under high magnetic field and low temperature.
- Pancake winding technology and associated instrumentation.
- Design and fabrication of HTS inserts.
- Metal-as-insulation technique implementation.
- A record for the operation of HTS insert with a 38 mm useful diameter, operating in a central magnetic field of 32.5 T, T of which 14.5 T are derived from the superconducting magnet only.

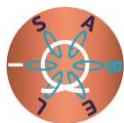
➤ KEY WORDS


- HTS conductor
- High magnetic field
- HTS insert
- Quench protection

➤ COLLABORATIONS

- CEA DAM Saclay
- CNRS Institut Néel/G2Elab Grenoble
- U. of Twente, the Netherlands
- U. of Geneva, Switzerland
- IEE, SAS, Slovakia
- HZDR, Germany
- Radboud University, the Netherlands
- Theva, Germany
- Bilfinger Noell, Germany
- Oxford Instruments

➤ SCIENTIFIC FIELDS


- Applied superconductivity

➤ CONTACT

Dr. Xavier CHAUD
xavier.chaud@lncmi.cnrs.fr
+33 (0)4 76 88 74 87
LNCMI GRENOBLE

HIGH TEMPERATURE SUPERCONDUCTOR (HTS) DEVELOPMENT

➤ MATERIALS

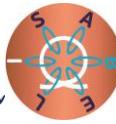
- REBaCuO superconductors

➤ SPECIFIC EQUIPMENT

- Several test benches (sample holder, power supply, acquisition for critical current J_c measurement or coil testing – field, stability, quench) for several field configurations:
 - 30 T \varnothing 50 mm RTB, \varnothing 38 mm CB for sample holder (wire, tape or VAMAS coil)
 - 20 T \varnothing 170 mm RTB, \varnothing 128 mm CB for sample holder (wire, tape, coil or coil sub-element)
 - 10 T \varnothing 376 mm RTB, \varnothing 298 mm CB for sample holder (e.g. race track coil)

RT for room temperature bore (available space inside the magnet) and CB for cold bore (available space in the cryostat)

- Home-made winding machine for REBCO pancakes made out of tapes with 3 independent spools
- DC power supplies (10V 1200 to 5V 3000 A)
- NI data acquisitions cards and modules


➤ PUBLICATIONS AND ADDITIONAL INFORMATION

[T. Lecrevisse et al., Supercond. Sci. Technol. 31, 055008 \(2018\)](#)

[P. Fazilleau et al, Cryogenics 106 103053 \(2020\)](#)

Cryogenics BEST PAPER AWARD 2020.

43T+ HYBRIDE MAGNET

➤ **TEAM INTEREST:** High Magnetic Field Science & Technology (hybrid & Superconducting magnets, cryogenics)

➤ BRIEF DESCRIPTION

Based on resistive and superconducting technologies, a modular user platform is being built with the objective to deliver to the scientific community various continuous high magnetic field and flux configurations. They range from 43 T in 34 mm diameter using 24 MW of electrical power down to 9 T in 800 mm diameter when the large bore superconducting outset magnet is used alone. This hybrid magnet has been commissioned in November 2024 up to 42 T, as a first step.

➤ TEAM ASSETS

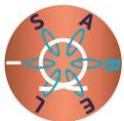
- Conception studies of large-scale superconducting magnets
- Hybrid magnet technologies
- Low temperature superconducting cable & conductors
- Large scale Cryogenics (construction and process)
- Large scale mechanical assembly & handling
- Call for tenders and follow-up of large industrial contracts (up to 2-3 MEUR, Total budget 15 MEUR)
- Expertise delivered for large-scale superconducting magnet projects (MADMAX, PBC Working Group@CERN, AMS-02 installed on ISS)

➤ SCIENTIFIC FIELDS

- Superconductivity, cryogenics & vacuum technologies
- Electricity & Magnetism
- Experimental physics

➤ KEY WORDS

- DC High Magnetic Fields
- Hybrid Magnets
- Superconducting magnet technologies
- Applied Superconductivity
- Cryogenics with N₂, He, including superfluid He
- Vacuum technologies
- R&D


➤ COLLABORATIONS & CONTRACTS

- Air Liquide (38)
- A.t.c.i Sarl (38)
- Aurubis (Olen)
- AW Pont-roulant
- Bruker (Germany)
- Bilfinger NOELL GmbH
- CEA-Saclay
- CERN
- Cryo Diffusion (38)
- Danfysik
- Ets PETERS (59)
- Forissier SAS (Tresses métalliques)
- GRUTER & MARCHAND
- OERLIKON LEYBOLD
- Pfeiffer Vacuum
- Ravni Technologies
- SDMS (38)
- Sofranel
- University Grenoble Alpes

➤ CONTACT

Dr. Pierre PUGNAT
pierre.pugnat@lncmi.cnrs.fr
LNCMI-GRENOBLE

43T+ HYBRIDE MAGNET

➤ SPECIFIC EQUIPMENTS

- The superconducting conductor assembly line
(https://www.youtube.com/watch?v=cp5NI_R2cN5s)

A dedicated in-house production line for the soft-soldering assembly of the superconducting conductor via induction heating was developed and installed. A total of 44 unit lengths of 265 m long conductor were successfully produced and wound in a single pancake coil prior to the delivery to the coil manufacturer (Bilfinger NOELL GmbH).

Conductor cross-section= 18x13 mm²

- Part of the cryogenic utilities (High pressure gaseous He tanks @ 200 bars)

- Part of the cryogenic satellite producing the superfluid He (current leads and lambda plate)

➤ PUBLICATIONS & ADDITIONAL INFORMATION

- [P. Pugnat et al., IEEE TAS 22, 6001604 \(2012\)](#)
- [R. Pfister et al., IEEE TAS 22, 9500504 \(2012\)](#)
- [L. Ronayette et al., IOP Conf. Ser.: Mater. Sci. Eng. 171, 012107 \(2017\)](#)
- [P. Pugnat et al., IEEE TAS 28, 4301005 \(2018\)](#)
- Poster@ <https://indico.cern.ch/event/659554/contributions/2714073/>
- [P. Pugnat et al., IEEE TAS 28, 4300907 \(2018\)](#)
- [H. J. Schneider-Muntau et al., IEEE TAS 28, 4900506 \(2018\)](#)
- [P. Pugnat et al., IEEE TAS 30, 4300605 \(2020\)](#)
- [P. Pugnat et al., IEEE TAS 32, 4300607 \(2022\)](#)
- [P. Pugnat et al., IEEE TAS 34, 4300305 \(2024\)](#)
- ["LNCMI hybrid magnet reaches 42 Tesla"](#)

© P. Pugnat, LNCMI



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

DRESDEN HIGH MAGNETIC FIELD LABORATORY

Helmholtz-Zentrum Dresden-Rossendorf

HLD-HZDR

hzdr
HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF

HLD.
DRESDEN HIGH MAGNETIC
FIELD LABORATORY

Contact

Bautzner Landstraße 400,
01328 Dresden - Germany

kontakt@hzdr.de

+49 351 260 – 0

<https://www.hzdr.de/db/Cms?pOid=10379&pNid=580>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

THERMOMETRY AND SENSING

➤ **TEAM INTEREST:** Studying magnetic materials for the potential use in cooling applications

➤ **BRIEF DESCRIPTION**

Our team is specialized in the characterization of magnetocaloric materials in static and pulsed magnetic fields. We develop measurement probes that allow the direct determination of temperature changes simultaneously with their magnetization and strain. We are focussed on materials for room-temperature applications, but also for the liquefaction of gases at cryogenic temperatures.

➤ **TEAM ASSETS**

- Simultaneous measurements of adiabatic temperature changes, magnetization and strain of magnetocaloric materials in pulsed fields
- Characterization of multicaloric materials under uniaxial load and magnetic fields
- Specific-heat measurements in static fields
- Synthesis of magnetocaloric materials
- Thermodynamic and magnetic simulations
- Calibration of temperature sensors

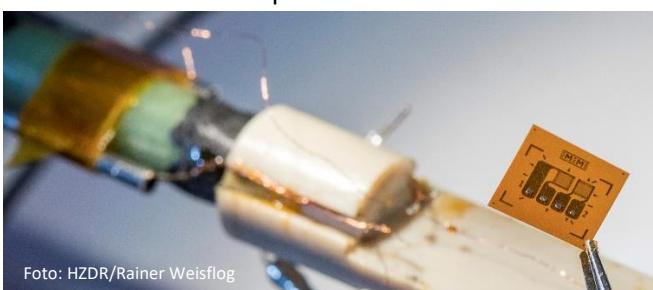


Foto: HZDR/Rainer Weisflog

Foto: HZDR/Bernd Schröder

➤ **KEY WORDS**

- Magnetocaloric materials
- Multicaloric effects
- Specific heat
- Simultaneous measurements of various physical properties
- Magnetic cooling
- Magnetic shape memory

➤ **COLLABORATIONS**

- MagnoTherm Solutions

➤ **PUBLICATIONS AND ADDITIONAL INFORMATION**

<https://www.hzdr.de/db/!PubJournalsFWH?pNid=636>

• **Patents**

Elektronische Baugruppe, Kühlvorrichtung, Kühlvorrichtungsanordnung, Kühelementanordnung, sowie Verfahren davon

J. Hornung, T. Gottschall,
DE 10 2018 118 813.7 (21.11.2019)

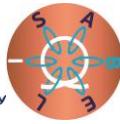
Kühlvorrichtung und ein Verfahren zum Kühlen

T. Gottschall, K.P. Skokov, and
O. Gutfleisch
DE 10 2016 110 385.3 (06.06.2016)

➤ **CONTACT**

industry-hld@hzdr.de

Helmholtz-Zentrum
Dresden-Rossendorf



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

THERMOMETRY AND SENSING

➤ SCIENTIFIC FIELDS

- Magnetic and multicaloric refrigeration
- Magnetic liquefaction of hydrogen
- Characterization of magnetic materials

➤ MATERIALS

- Metal alloys
- Composites

➤ SPECIFIC EQUIPMENT

- Pulsed fields up to 70 T from 1 K to 400 K
- Static fields up to 20 T
- ^3He system from 0.36 K up to 320 K
- Dilution refrigerator down to 20 mK
- Uniaxial-load cell up to 250 MPa in pulsed fields up to 50 T
- Thermometry with ultra-thin thermocouples
- Dilatometry using strain gauges
- Magnetization measurements under adiabatic conditions
- Sputtering of thermocouples and resistive thermometers

PULSED-POWER SUPPLIES

➤ **TEAM INTEREST:** Development, design and construction of pulsed-power equipment

➤ **BRIEF DESCRIPTION**

The HLD develops pulsed-power supplies up to gigawatt strength, pulsed magnets up to the 100 T feasibility limit, experimental measurement equipment as well as the cryotechnical sample environment. The HLD is engaged in realizing unprecedented high-field setups for advanced experiments at other large-scale facilities, in particular at advanced radiation sources.

➤ **TEAM ASSETS**

- Development, design, fabrication, and testing of modular capacitive pulsed-power supplies for fundamental research and industrial applications
- Finite-element simulation of pulsed-power circuits
- Fabrication of pulsed-power components
- Software engineering of pulsed-power supplies

Foto: HZDR/André Wirsig

Foto: HZDR/Jürgen Jeibmann

➤ **SCIENTIFIC TECHNICAL FIELDS**

- Magnetic and multicaloric refrigeration
- Magnetic liquefaction of hydrogen
- Characterization of magnetic materials
- Pulse-field joining, forming, and welding
- Medical technology applications for tumor therapy and the treatment of neurodegenerative diseases

➤ **KEY WORDS**

- Pulsed-power supply
- Gigawatt power
- Capacitor bank

➤ **COLLABORATIONS**

- European XFEL
- LULI @ Saclay
- BESSY @ HZB

➤ **PUBLICATIONS AND ADDITIONAL INFORMATION**

<https://www.hzdr.de/db/!PubJournalsFWH?pNid=636>

➤ **PATENTS**

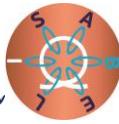
Anordnung zur Erzeugung hochenergetischer Protonenstrahlen und deren Verwendung

T.E. Cowan, R. Sauerbrey, T. Herrmannsdörfer

DE 10 2011 052 269

(30.03.2017)

Vorrichtung zur Stromverstärkung für die elektromagnetische Pulsumformung und Verwendung


T. Herrmannsdörfer, S. Dittrich
EP 111545455 (15.02.2011)

➤ **CONTACT**

industry-hld@hzdr.de

Helmholtz-Zentrum
Dresden-Rossendorf

MAGNET FABRICATION

➤ **TEAM INTEREST:** Design and fabrication of magnets

➤ **BRIEF DESCRIPTION**

The Dresden High Magnetic Field Laboratory (HLD) at the Helmholtz-Zentrum Dresden-Rossendorf is available to external scientists as a user facility. It enables experiments in the highest pulsed magnetic fields up to the 100 T range. In the HLD workshop, resilient pulsed magnetic-field coils are designed and manufactured to meet the highest demands. We offer this cutting-edge technology for generating high pulsed magnetic fields as individual one-off productions for industrial applications.

➤ **TEAM ASSETS**

In the workshop of the Dresden High Field Magnetic Laboratory (HLD), we manufacture special magnetic-field coils individually. After assessing the technical feasibility and estimating the development and manufacturing effort, we will be happy to make you an offer.

➤ **KEY WORDS**

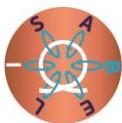
- Magnet design and fabrication
- Magnet simulations

➤ **COLLABORATIONS**

- European XFEL
- LNCMI-T
- ISSP – Univ. of Tokyo

➤ **PUBLICATIONS AND ADDITIONAL INFORMATION**

<https://www.hzdr.de/db/!PublJournalsFWH?pNid=636>


<https://hzdr-innovation.de/en/products/magnetic-field-coils/>

➤ **CONTACT**

industry-hld@hzdr.de

Helmholtz-Zentrum
Dresden-Rossendorf

ADVANCED CHARACTERIZATION

➤ **TEAM INTEREST:** Invention of advanced measurement techniques for the characterization of materials under extreme conditions

➤ **BRIEF DESCRIPTION**

The Dresden High Magnetic Field Laboratory focuses on modern materials research in high magnetic fields. High-magnetic-field experiments are the ideal way to gain insights into the matter that surrounds us. Magnetic fields allow for the systematic manipulation and control of material properties – which is why these kinds of experiments are conducted on new materials so that their fundamental properties can be explored and so that they can be optimized for future application.

➤ **TEAM ASSETS**

Our team conducts experiments under extreme conditions. For this purpose, we develop most of the experimental equipment ourselves. As a good example, the ROTAX two-axis rotator is a high-fidelity solution to realize fully spherical sample rotations in experiments with extreme environmental conditions. Its innovative axis-in-axis principle allows to realize any rotation direction with the highest precision. The ROTAX enables fully automated 3D measurements in experiments in

- Small sample space
- High magnetic fields
- Cryogenic temperatures
- Ultra-high vacuum

The ROTAX is available in either an all-plastic or all-metallic version. Further information about the ROTAX as a product on the commercial market can be found at <https://products.hzdr-innovation.de/rotax-two-axis-rotator>

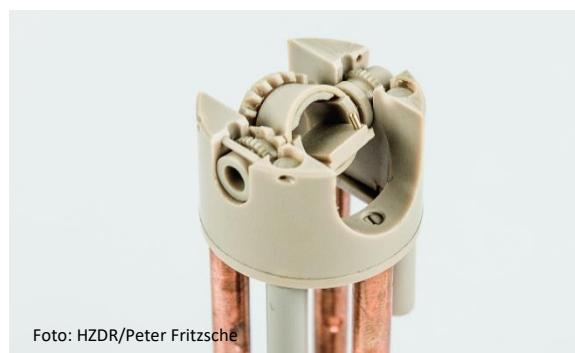


Foto: HZDR/Peter Fritzsche

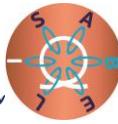
➤ **KEY WORDS**

- High-magnetic-field experiments
- mK temperatures
- Hydrostatic pressure
- Uniaxial load

➤ **COLLABORATIONS**

- Universities, Max Planck Institutes and others

➤ **PUBLICATIONS AND ADDITIONAL INFORMATION**


<https://www.hzdr.de/db/!PublJournalsFWH?pNid=636>

➤ **CONTACT**

industry-hld@hzdr.de

Helmholtz-Zentrum
Dresden-Rossendorf

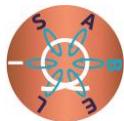
ADVANCED CHARACTERIZATION

➤ SCIENTIFIC FIELDS

- Electrical transport
- Magnetization
- Ultrasound
- Electron Spin Resonance
- Magnetostriction
- Nuclear Magnetic Resonance
- Magnetic torque
- Magnetocaloric effect
- Electrical polarization
- Magneto-optical transmission
- X-ray diffraction at XFEL

➤ MATERIALS

- Metals
- Semiconductors
- Superconductors
- Low-dimensional materials
- Magnetic materials
- Nanostructured materials


➤ SPECIFIC EQUIPMENT

- Pulsed fields up to 70 T
- Static fields up to 22 T
- ^3He system from 0.24 K up to 320 K
- Dilution refrigerator down to 20 mK

Foto: HZDR/Jürgen Jeibmann

LABORATOIRE NATIONAL DES CHAMPS MAGNETIQUES INTENSES – TOULOUSE LNCMI-TOULOUSE

© Julien BILLETTE (LNCMI)

Contact

143, avenue de Rangueil

31400 Toulouse

FRANCE

direction@lncmi.cnrs.fr

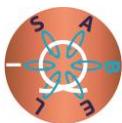
05.62.17.28.60

<https://lncmi.cnrs.fr/>

BROWSE BY INDUSTRIAL APPLICATION

OR SCIENTIFIC FIELD

39



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

FUNDAMENTAL INTERACTION TESTS IN MAGNETO-OPTICS

➤ **TEAM INTEREST:** Ultimate measurements for fundamental interaction tests.

➤ **BRIEF DESCRIPTION**

Our principal goal is the experimental demonstration of fundamental results of the quantum electrodynamic theory. This encompasses ultimate measurement of the effect of magnetic field on light polarization and magnetic effects on the atomic response.

➤ **TEAM ASSETS**

- Precise optical polarization measurement
- Realization of optical cavities of very high finesse
- Laser frequency locking to cavities
- Magneto-optics
- Interferential mirrors and birefringent materials

➤ **SPECIFIC EQUIPMENT**

- Ultra-sharp optical cavities(finesse>500000)
- Very low losses interferential mirrors (losses~10-6)
- Opto-electronic instrumentation for laser locking
- Clean room facilities
- Ultra-High vacuum technics
- Guided and Free space Optics
- Very precise polarimetry

➤ **SCIENTIFIC FIELDS**

- Magneto-optics
- Fundamental Interaction

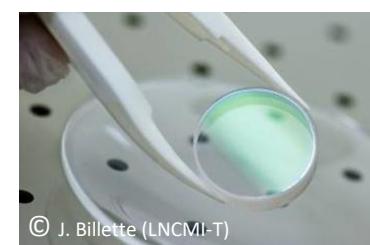
➤ **MATERIALS**

- Vacuum
- Gases: N₂, Ar, Ne, He, etc.

➤ **KEY WORDS**

- Magnetic field
- Fundamental interaction
- Optics
- Polarimetry
- Quantum Electrodynamics
- Metrology
- Interferential Mirrors
- Cotton-Mouton effect

➤ **COLLABORATIONS**

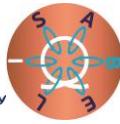

Open to on demand R&D studies

Laboratoire des Matériaux Avancés, Lyon

➤ **CONTACT**

Dr. Carlo RIZZO
carlo.rizzo@lncmi.cnrs.fr
+33 (0)5 62 17 29 81
Dr. Remy BATTESTI
remy.battesti@lncmi.cnrs.fr

LNCMI Toulouse


© J. Billette (LNCMI-T)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

FUNDAMENTAL INTERACTION TESTS IN MAGNETO-OPTICS

© J. Billette (LNCMI-T)

➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- [R. Battesti *et al.*, Rep. Prog. Phys. **76**, 016401 \(2013\)](#)
- [M. Fouché *et al.*, PRD **93**, 093020 \(2016\)](#)
- [M. Fouché *et al.*, PRD **95**, 099902 \(2017\)](#)
- [J. Agil *et al.*, Eur. Phys. J. D **76**, 192 \(2022\)](#)
- [J. Agil *et al.*, Eur. Phys. J. Appl. Phys. **98**, 61 \(2023\)](#)

HIGH TEMPERATURE SUPERCONDUCTORS

➤ **TEAM INTEREST:** Fundamental investigation of superconductors

➤ **BRIEF DESCRIPTION**

Superconducting materials allow for the transport of electricity without any loss (zero resistance) and enable stable levitation. However, these striking phenomena are only observable at low temperatures. Developing room temperature superconductors requires a deep understanding of the underlying physical properties. Our team is involved in studying the electronic properties of such materials under extreme conditions of temperature, magnetic fields and pressure to unravel the physics of these compounds.

➤ **TEAM ASSETS**

Low noise measurements in extreme conditions:

- Electrical transport
- Ultrasound measurement
- Contactless transport measurement based on Tunneling Diode Oscillator (TDO)
- Torque magnetometry
- Thermo-electricity

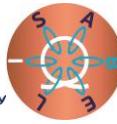
➤ **KEY WORDS**

- Magnetic fields
- High temperature superconductivity
- Strongly correlated systems

➤ **COLLABORATIONS**

- Open to on demand R&D studies
- Université de Sherbrooke (Canada)
- Université de Bristol (UK)

➤ **CONTACT**


Dr. Cyril PROUST
cyril.proust@lncmi.cnrs.fr

+33 (0)5 62 17 28 61
LNCMI Toulouse

➤ **SCIENTIFIC FIELDS**

- Fundamental solid states physics
- Magnetism and superconductivity
- Electronic properties of high T_c superconductors

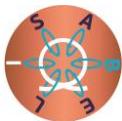
HIGH TEMPERATURE SUPERCONDUCTORS

➤ SPECIFIC EQUIPMENT

- Phase sensitive (lock-in) amplifier
- Ultra-sound spectrometer
- Oscilloscope (1GHz,12bits)
- Fast acquisition systems (up to 1MHz@24bits resolution)
- ^4He , ^3He , dilution fridge cryostat (base temperature down to 50mK)
- Pulse magnets (magnetic fields up to 90T)

➤ MATERIALS

- High temperature superconductors ($\text{YBa}_2\text{Cu}_3\text{O}_y$, $\text{HgBa}_2\text{CuO}_{4+}$, $\text{Tl}_2\text{Ba}_2\text{CuO}_{6+}$, etc.)
- Other correlated systems (NiPS_3 , Graphite, InAs , Cr_2O_3 , etc.)


➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- [N. Doiron-Leyraud *et al.*, Nature 447, 565 \(2007\)](#)
- [S. Badoux *et al.*, Nature 531, 210 \(2016\)](#)
- [C. Proust *et al.*, Annu. Rev. Condens. Matter Phys. 10, 409 \(2019\)](#)
- [Legros *et al.*, Nature Physics 15, 142 \(2019\)](#)
- [S. Benhabib *et al.*, Nature Physics 17, 194 \(2021\)](#)
- [M. Lizaire *et al.*, PRB 104, 014515 \(2021\)](#)

<https://lncmi.cnrs.fr/la-recherche/metals-supra/>

HIGH STRENGTH CONDUCTORS

➤ **TEAM INTEREST:** Research and development of high strength conductors for pulsed magnets and other industrial applications

➤ BRIEF DESCRIPTION

Production of high magnetic fields requires the use of specific coils where cables are submitted to very harsh environment. Conductors need to be carefully designed in order to resist to mechanical deformations due to heating and electrodynamic forces and at the same time maintaining a good level of conductivity. Our team is specialized in whole process of wire design and fabrication, starting from bulk material and ending with wire drawing and macroscopic characterization.

➤ TEAM ASSETS

- Design of high strength conductors
- Material and process choices
- Elaboration by drawing or accumulative drawing and bundling processes
- Mechanical and electrical characterization at -196 °C and +20 °C

➤ SCIENTIFIC FIELDS

- Electricity and Magnetism
- Material characterization
- Nanomaterials
- Conductive Materials

➤ KEY WORDS

- High strength conductors
- Nanostructured materials
- Copper
- Wire-drawing
- Severe plastic deformation
- Mechanical strength
- Electrical conductivity

➤ COLLABORATIONS

- Open to on demand R&D studies
- Past and ongoing collaboration:
 - B-MAX/I-Cube Research
 - TURNS SOFILEC
 - IRT-Safran
 - ALSTOM MSA (FR)

➤ CONTACT

Dr. Florence LECOUTURIER-DUPOUY

florence.lecouturier@lncmi.cnrs.fr

Dr. Simon TARDIEU

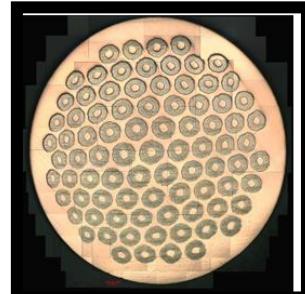
simon.tardieu@lncmi.cnrs.fr

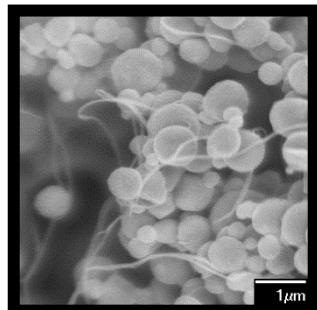
+33 (0)5 62 17 28 61

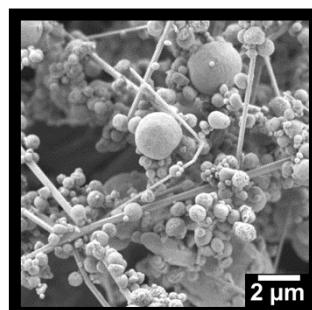
LNCMI-Toulouse

HIGH STRENGTH CONDUCTORS

➤ SPECIFIC EQUIPMENT


- 2 draw-benches (300 kN, L = 6 m; 100 kN, L = 16.5 m)
- Drawing bull-block (40 kN)
- Cylindrical drawing dies (from 40 mm to 0.2 mm)
- Turk-head shaping die
- Dynamic (varying speed, L = 3 m) or static furnaces (L = 1 m) under neutral atmosphere ($T_{\max} = 1150^{\circ}\text{C}$)
- Tensile test machine (100 kN, T = +20 °C and -196 °C)


➤ MATERIALS

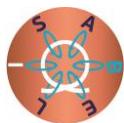

- Cu/SS

- Cu/Nb Nanostructures

- CNT/Cu Nanostructures

- Ag/Cu Nanostructures

➤ PUBLICATIONS AND ADDITIONAL INFORMATION


Patents :

- FR3084376(B1), 2021
- FR2968823(B1), 2015

<http://lncmi.cnrs.fr/la-recherche/magnet-materials-technology/high-strength-conductors/>

PULSED MAGNETS AND GENERATORS

➤ **TEAM INTEREST:** Design and fabrication of pulsed magnets and their associated generators for fundamental research and industrial applications

➤ **BRIEF DESCRIPTION**

With a strong interdisciplinary background, at the frontier between research and engineering, we develop pulsed magnets and generators for high magnetic field generation. These developments encompass thermal, mechanical and electromagnetic studies before magnet fabrication. Our expertise also extends to material choice for critical applications.

➤ **KEY WORDS**

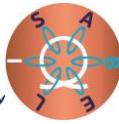
- Pulsed magnet
- Thermal, mechanical and electromagnetic simulation
- High power and high energy
- High strength material

➤ **TEAM ASSETS**

- Non-destructive pulsed magnet production (up to 100T)
- Specific design and fabrication for large scale research facility integration (RX, neutrons, High power lasers)
- Design of transportable pulsed energy supply units for on-site use (from 10kJ to 6MJ)

➤ **COLLABORATIONS**

- Open to on demand R&D studies
- Past and ongoing collaboration
 - BMax/I-Cube Research (FR)


➤ **SCIENTIFIC FIELDS**

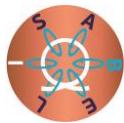
- Electricity and Magnetism
- Physical modelling

➤ **CONTACT**

Jérôme BÉARD
jerome.beard@lncmi.cnrs.fr
+33 (0)5 62 17 29 75
LNCMI TOULOUSE

PULSED MAGNETS AND GENERATORS

➤ SPECIFIC EQUIPMENT


- Capacitor banks (up to 21MJ)
- Coil winding tools (up to 1m diameter and 2m long coils)– possibility to add high strength polymer fibers for reinforcement and/or cooling channels
- Reinforced concrete cells for tests with risk of explosion
- Magnet monitoring, destructive event prevention
- Transportable pulsed energy supply units for on-site use (from 10 kJ to 6 MJ)

➤ PUBLICATIONS AND ADDITIONAL INFORMATION

<http://lncmi.cnrs.fr/la-recherche/magnet-materials-technology/non-destructive-pulsed-magnetic->

CRYOGENICS

➤ **TEAM INTEREST:** Design and fabrication of cryostats and cryogenic infrastructure for scientific research

➤ **BRIEF DESCRIPTION**

Development of ultralow-temperature cryostats for measurements in both high pulsed and steady magnetic fields.

Development and operation of a vacuum facility.

Helium liquefaction process.

➤ **KEY WORDS**

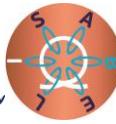
- Very low temperature
- ^3He , ^4He
- Cryostats
- Dilution fridges
- Metal-plastic cryostats
- Magnetic fields

➤ **TEAM ASSETS**

- In-house development, manufacturing and test of cryogenic systems meeting scientific needs and adapted to experimental environment
- In-house Helium liquefaction

➤ **COLLABORATIONS**

Open to on demand R&D studies


- ICA
- ESRF
- HZDR-HLD

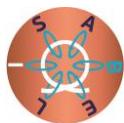
➤ **CONTACT**

Marc NARDONE
marc.nardone@lncmi.cnrs.fr
+33 (0)5 62 17 29 76
LNCMI Toulouse

CRYOGENICS

➤ MATERIALS

- ^3He , ^4He , LN_2 , Ar, H_2
- Stainless steel, Brass, copper, Cu-Ni alloys, Cu-Be Alloys
- Glass fiber epoxy composite G11 FR4
- Technical polymers

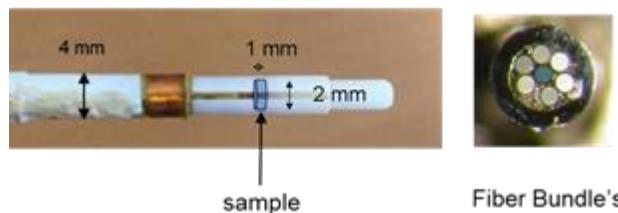

➤ SPECIFIC EQUIPMENT

- Conception/Design: Inventor, Autocad
- Machining: Numeric and conventional mills and lathes
- Sheet metal work machinery
- TIG welding stations, silver brazing station, bonding
- Sintering: Controlled atmosphere furnace
- Tests: leak detector, RGA, Lakeshore temperature controllers, LabVIEW, ORIGIN, etc.
- Vacuum production: Fixes and mobiles vacuum stations equipped with scroll, vane, turbo-molecular and diffusion pumps.
- Helium liquefier: Pulse tube cryo-generators, Helium compressors, gas bag + high pressure cylinders recovery

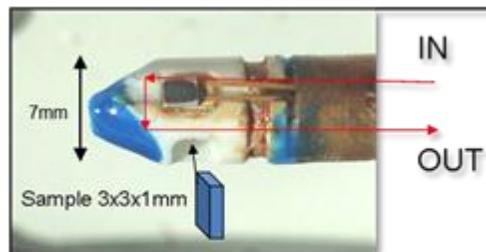
➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- [W. Knafo et al., Commun. Phys. 4, 40 \(2021\)](#)
- [G. Knebel et al., JPSJ 88, 6 \(2019\)](#)
- [F. Duc et al., Rev. Sci. Instrum. 85, 5 \(2014\)](#)
- [B. Fauqué et al., PRL, 110, 266601 \(2013\)](#)
- [P. Frings et al., Rev. Sci. Instrum. 77, 063903 \(2006\)](#)
- [M. Nardone et al., Cryogenics 41, 175-178 \(2001\)](#)

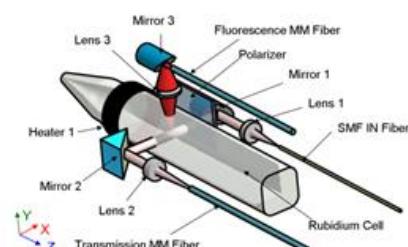
OPTICAL INSTRUMENTATION


➤ **TEAM INTEREST:** Instrumentation for the experiments under high pulsed magnetic field and extremely low temperatures

➤ **BRIEF DESCRIPTION**


Development of probes of different sizes and geometries for the measurements inside the bore of pulsed field magnets. The probes are suitable for magnetic, optical and electrical measurements in high magnetic field and low temperatures.

➤ **TEAM ASSETS**


- Probes for photoluminescence and reflectivity spectroscopy based on fiber bundle's up to 90 T, 1.2 °K

- Probes for transmission spectroscopy up to 80 T, 1.2 °K

- Probes for Magnetic Field Metrology based on the fluorescence spectroscopy of Rubidium vapor. Up to 58 T.
- Data acquisition systems for pulsed fields measurement: light sources, spectrometers, temperature controllers, timing systems

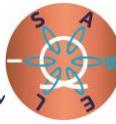
➤ **KEY WORDS**

- Probes
- Magnetic fields
- Low temperature
- Optical fibre

➤ **COLLABORATIONS**

Open to on demand R&D studies

➤ **SCIENTIFIC FIELDS**


- Optics
- Magneto-optics

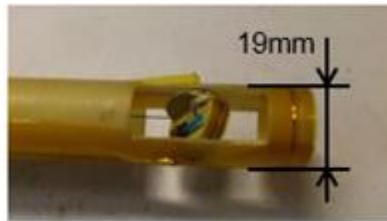
➤ **MATERIALS**

- Probes are made of ceramic materials
- Alumina and zircon
- Macor
- Plastic materials:
- PEEK
- Torlon

➤ **CONTACT**

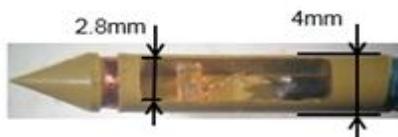
Dr. Nicolas BRUYANT
nicolas.bruyant@lncmi.cnrs.fr
+33 (0)6 22 84 24 73
LNCMI Toulouse

RF INSTRUMENTATION


➤ **TEAM INTEREST:** Instrumentation for the experiments under high pulsed magnetic field and extremely low temperatures

➤ **BRIEF DESCRIPTION**

Development of probes of different sizes and geometries for the measurements inside the bore of pulsed field magnets. The probes are suitable for nuclear magnetic resonance and contactless resistivity measurements in high magnetic field and low temperatures.


➤ **TEAM ASSETS**

- Probes angular dependance up to 60 T, 1.5 °K

Rotating sample holder : 0 to 90°.
Up to 60T – 1.5 K

- Probes for two samples, 90 T, 0.5 °K

Sample holder. Up to 90T – 1.5 K

➤ **SPECIFIC EQUIPMENT**

Data acquisition systems for pulsed fields measurement:

- RF sources, Vector network analyser & spectrum analyser up to 3GHz
- Power amplifiers in 0.1 – 1Ghz range and up to 500W
- Low noise amplifier and duplexers

➤ **KEY WORDS**

- Probes
- Magnetic fields
- Low temperature
- Radio frequency
- NMR
- Resistivity

➤ **COLLABORATIONS**

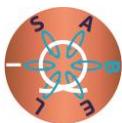
Open to on demand R&D studies

➤ **MATERIALS**

- Probes are made of ceramic materials: Alumina and zircon; Macor
- Plastic materials: PEEK; Torlon

➤ **CONTACT**

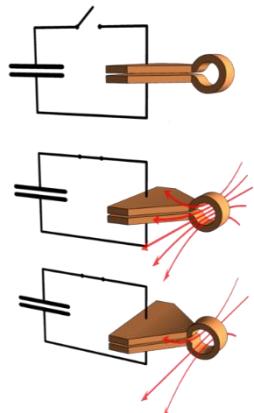
Dr. Nicolas BRUYANT
nicolas.bruyant@lncmi.cnrs.fr
+33 (0)6 22 84 24 73
LNCMI Toulouse


➤ **SCIENTIFIC FIELDS**

- Electronics
- Material Science

➤ **PUBLICATIONS AND ADDITIONAL INFORMATION**

- [L. Drigo et al., EPJ AP 52, 10401 \(2010\)](https://doi.org/10.1140/epjap/i2010-10401-5)
- [M. D. Watson et al., PRB 89, 205136 \(2014\)](https://doi.org/10.1103/PRB.89.205136)


MEGA-GAUSS MAGNETIC FIELD GENERATION

➤ **TEAM INTEREST:** Generation of high magnetic fields (beyond 100 T)

➤ **BRIEF DESCRIPTION**

Our Mega-gauss generator is one out of three platforms worldwide that makes use of capacitor-driven single-turn coils (STC) to produce fields in the **150 to 250 T range** for scientific applications. Although still higher fields can be obtained with flux compression techniques, STCs have the advantage that the coil destruction does not affect the experimentally useful volume: samples, cryostats and other equipment generally survive and experiments can therefore be performed reproducibly.

➤ **TEAM ASSETS**

- Magnetic field generation up to 200 T
- Different measurements in high pulsed magnetic field (200 T, 6 μ s):
 - VIS-NIR fibre-based spectroscopy
 - MIR free-beam spectroscopy
 - Studies of magnetization and electrical transport properties

➤ **KEY WORDS**

- Mega-gauss
- Semi-destructive magnets
- Magnetization
- Magneto-spectroscopy in NIR-VIS
- Magneto-transport

➤ **COLLABORATIONS**

Open to on demand R&D studies

➤ **PUBLICATIONS AND ADDITIONAL INFORMATION**

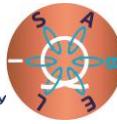
- [A. Miyata et al., PRB 96, 121111 \(2017\)](#)
- [L. Opherden et al., PRB 99, 085132 \(2019\)](#)
- [A. Miyata et al., Nature Physics 11, 582 \(2015\)](#)

➤ **CONTACT**

Dr. Oleksiy DRACHENKO
oleksiy.drachenko@lncmi.cnrs.fr

Dr. Oliver PORTUGALL
oliver.portugall@lncmi.cnrs.fr

Phone : +33 (0)5 62 17 29 87
LNCMI-Toulouse


➤ **SCIENTIFIC FIELDS**

- Magnetism
- Magnetic field metrology
- Magneto-spectroscopy from visible towards near-infrared
- Magneto-transport

➤ **SPECIFIC EQUIPMENT**

- Capacitor driven generator up to 60 kV and 2 MA.
- Cryogenic environment down to 1.5 K
- Ultrafast 10 GHz acquisition
- Enhanced EMI protection

QUANTUM ELECTRONICS

➤ **TEAM INTEREST:** Fundamental physics of low dimensional systems including individual nano-objects at low temperature and in high magnetic field

➤ BRIEF DESCRIPTION

Our team specializes in high magnetic field magneto-optics and magneto-transport measurements. We investigate the electronic properties of quantum wires, monolayer transition metal dichalcogenides, monolayer black phosphorus and perovskites with a further device application.

➤ TEAM ASSETS

- Semi-conductor physics and low dimensional materials (GaAs/AlGaAs core-shell and core-multi-shell nanowires)
- Exfoliated monolayer transition metal dichalcogenides (WS₂ and WSe₂)
- Fundamental electronic properties of Perovskites for efficient solar cells

➤ SCIENTIFIC FIELDS

- Semiconductors
- Low dimensional systems
- Electronic properties, excitons, phonons

➤ MATERIALS

- GaAs/AlGaAs core-shell and core-multi-shell nanowires
- Transition metal dichalcogenides (WS₂ and WSe₂)
- Perovskites

➤ SPECIFIC EQUIPMENT

- ³He/⁴He Dilution refrigerator (T=10 mK) with a 16 T superconducting magnet
- Micro-photo luminescence (MPL) and Micro-Raman for individual nano-objects investigation
- Time resolved photoluminescence (TRPL) and transmission (pump probe) with a femtosecond Ti-sapphire laser, OPO and streak camera

➤ KEY WORDS

- High magnetic fields
- Low-dimensional systems
- Magneto-optics and magneto-transport
- Low temperature

➤ COLLABORATIONS

- Ecole Polytech. Fed. de Lausanne
- Weizmann Inst. Of Sc.
- U Leipzig
- U of Cambridge
- U Paris-Saclay
- MIT/ChemE
- TUM
- U of Groningen
- U of Tokyo
- Inst. Des Sc. Chim. De Rennes

➤ PUBLICATIONS AND ADDITIONAL INFORMATION

<https://scho-lar.google.fr/citations?user=4ono85UAAAAJ&hl=en>

➤ CONTACT

Dr. Duncan MAUDE
duncan.maude@lncmi.cnrs.fr
Dr. Paulina PLOCHOCKA-MAUDE
paulina.plochocka@lncmi.cnrs.fr
+33 (0)5 62 17 28 68
LNCMI Toulouse

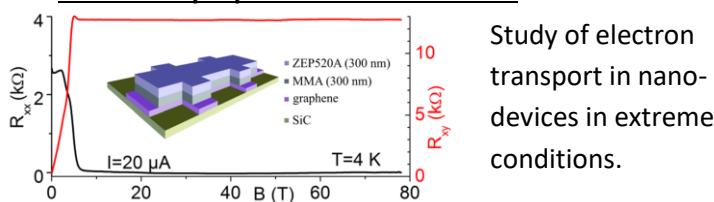
OR SCIENTIFIC FIELD

NANO-OBJECTS AND SEMI-CONDUCTING NANOSTRUCTURES

➤ **TEAM INTEREST:** Electronic properties of nano-objects in extreme conditions of low temperature and high magnetic field

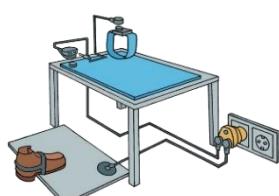
➤ **BRIEF DESCRIPTION**

Our team is specialized in electrical conductivity measurements under high magnetic field of nano-devices and semi-conducting nano-structures in order to understand their electronic properties. We aim at understanding the fundamental quantum characteristics of low-dimensional conductors in order to pave the way for next-generation electronic devices.


➤ **TEAM ASSETS**

• **Nanofabrication (sub-micrometer scale)**

Realization of contacts to nano-objects for electrical measurements.


• **Electronic properties of nano-devices**

Study of electron transport in nano-devices in extreme conditions.

• **Low-noise electrical measurements**

• **Electro-Static Discharge (ESD) sensitive devices**

Electrical measurements of ESD sensitive devices.

• **In situ stencil nanolithography (2025)** in lab preparation of nanostructures of air-sensitive materials

➤ **KEY WORDS**

- High magnetic fields
- Low-dimensional systems
- Electronic transport properties
- Low temperature

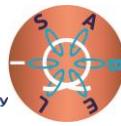
➤ **COLLABORATIONS**

- Open to on demand R&D studies

Past and on-going collaborations:

- Intel (IR)
- Charles Coulomb Lab (Montpellier)
- Univ. Nottingham (U.K.)
- Radboud Univ. (The Netherlands)
- LPCNO (Toulouse)
- AIME (Toulouse)
- National University of Singapore
- IFW Dresden (Germany)
- Univ. Würzburg (Germany)

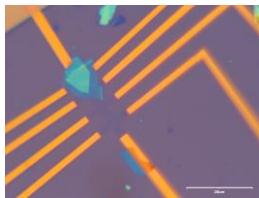
➤ **CONTACT**


Dr. Walter ESCOFFIER

walter.escoffier@lncmi.cnrs.fr

+33 (0)5 62 17 29 70

LNCMI-Toulouse


NANO-OBJECTS AND SEMI-CONDUCTING NANOSTRUCTURES

➤ SCIENTIFIC FIELDS

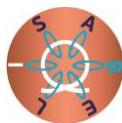
- Solid State Physics
- Nanoscience
- Semiconductors
- Quantum electronics

➤ MATERIALS

Quantum nano-systems:

- 2D materials (graphene, TMDCs, topological insulators)
- 2D electron gas at the interface of complex oxides ($\text{LiAlO}_3/\text{SrTiO}_3$, perovskites)
- Nano-objects from soft chemistry: (Gold nano-wires, platinum nano-stars)

➤ PUBLICATIONS AND ADDITIONAL INFORMATION



<http://lncmi.cnrs.fr/larecherche/semiconducteur-nanophys-ics/home/>

➤ SPECIFIC EQUIPMENT

- Pulsed magnetic field in ${}^3\text{He}$ cryostat (360 mK, 60 T)
- Electrostatic discharge control environment
- Fast electronic acquisition systems (up to 4 MHz@16 bits resolution)

QUANTUM CONDUCTORS AND MAGNETS

➤ **TEAM INTEREST:** Investigation of quantum conductors and magnets under intense magnetic field

➤ **BRIEF DESCRIPTION**

Quantum conductors and magnets offer the possibility to investigate a large range of new quantum phenomena. Amongst them, quantum phase transitions delimiting different magnetic phases, unconventional superconductivity, valence transitions and crossovers. The team works on the experimental investigation of these quantum materials under intense magnetic field, with the aim to discover new quantum phases and elucidate their microscopic nature.

➤ **TEAM ASSETS**

In recent years, the team has developed a unique panel of microscopic and macroscopic probes to study the electronic properties of correlated electron systems under extreme conditions of intense magnetic field, which can be combined with low temperature and high pressure.

- At the ESRF synchrotron facility, X-ray (absorption and magnetic circular dichroism) spectroscopy in pulsed field allows accessing the valence and element-selective magnetization of materials under magnetic fields up to 30 T.
- At the ILL neutron source, neutron diffraction permits determining the magnetic structure of magnets in magnetic fields up to 40 T.
- At the LNCMI-T site, a various set of extreme conditions can be combined for electrical resistivity and magnetization measurements: magnetic fields up to 90 T (and >100 T soon), high pressures up to 4 GPa or temperatures down to 100 mK combined with magnetic fields up to 60 T.

➤ **SCIENTIFIC FIELDS**

- Correlated-electrons physics
- Quantum magnetism
- Unconventional superconductivity

➤ **KEY WORDS**

- Quantum phase transitions
- Quantum magnetism
- Heavy-fermion systems
- Low-dimensional magnetism
- Frustrated magnetism
- Superconductivity

➤ **COLLABORATIONS**

- ESRF-Grenoble
- ILL-Grenoble
- CEA-Grenoble
- University of Tohoku

➤ **CONTACT**

Dr. Fabienne DUC

fabienne.duc@lncmi.cnrs.fr

Dr. William KNAFO

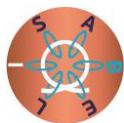
william.knafo@lncmi.cnrs.fr

LNCMI-TOULOUSE

QUANTUM CONDUCTORS AND MAGNETS

➤ MATERIALS

- Correlated electron systems, including heavy-fermion materials, iron-based superconductors and their magnetic parents
- Low-dimensional and frustrated magnets


➤ SPECIFIC EQUIPMENT

- At the ESRF, cryomagnet for XAS and XMCD in transmission mode in high pulsed magnetic fields up to 30 T.
- At the ILL, cryomagnet for neutron diffraction in magnetic fields up to 40 T.
- At the LNCMI-T, multiple probes and their electric apparatus for electrical resistivity and magnetization experiments under pulsed fields up to 90 T.

➤ PUBLICATIONS AND ADDITIONAL INFORMATION

- [N. Qureshi *et al.*, PRB 106, 094427 \(2022\)](#)
- [W. Knafo *et al.*, JPSJ 88, 063705 \(2019\)](#)
- [W. Knafo *et al.*, Nature Phys. 16, 942 \(2020\)](#)
- [S. Yamamoto *et al.*, PRB 106, 094404 \(2024\)](#)

MAGNETO-CHIRAL ANISOTROPY

➤ **TEAM INTEREST:** Chiral systems in a magnetic field

➤ **BRIEF DESCRIPTION**

Optical and electrical measurements to observe magneto-chiral anisotropy in condensed matter systems

➤ **TEAM ASSETS**

- Highly sensitive measurements of optical and electrical non-reciprocities
- UV-VIS-NIR spectroscopy

➤ **SCIENTIFIC FIELDS**

Electrical and optical properties of condensed matter

➤ **MATERIALS**

Chiral molecules, semi-conductors and metals

➤ **SPECIFIC EQUIPMENT**

- Alternating polarity electromagnet
- Magneto-chiral dichroism UV-VIS-NIR spectrometer
- Electrical non-reciprocity measurement setup

➤ **KEY WORDS**

- Chirality
- Polarization optics
- Magneto-transport

➤ **COLLABORATIONS**

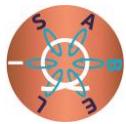
Open to R&D requests

➤ **PUBLICATIONS AND ADDITIONAL INFORMATION**

- [M. Atzori et al., Sci. Adv. 7, \(17\) :eabg2859 \(2021\)](#)
- [M. Atzori et al., Chirality 33, 844 \(2021\)](#)

➤ **CONTACT**

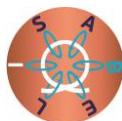
Dr. Geert RIKKEN
geert.rikken@lncmi.cnrs.fr
LNCMI-TOULOUSE


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

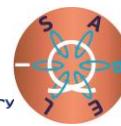
BROWSE BY EXPERIMENTS

EXPERIMENTAL TECHNIQUES	HFML NIJMEGEN	LNCMI GRENOBLE	HLD DRESDEN	LNCMI TOULOUSE
OPTICAL SPECTROSCOPY AND MAGNETO-OPTICS				
OPTICAL MICROSCOPE IMAGING	<u>63</u>			
BIREFRINGENCE, DICHROISM AND FARADAY ROTATION	<u>64</u>			<u>64</u>
(MICRO-) PHOTOLUMINESCENCE SPECTROSCOPY AND RAMAN SCATTERING	<u>65</u>	<u>65</u>	<u>67</u>	<u>67</u>
(FAR) INFRARED SPECTROSCOPY	<u>68</u>	<u>68</u>		<u>68</u>
ULTRAFAST DYNAMICS	<u>69</u>			
THERMODYNAMIC PROPERTIES				
MAGNETOCALORIC EFFECT			<u>70</u>	
SPECIFIC HEAT	<u>71</u>	<u>71</u>		
THERMOPOWER AND NERNST-ETTINGSHAUSEN MEASUREMENT	<u>72</u>	<u>72</u>		
MAGNETOSTRICTION AND THERMAL EXPANSION (UNDER UNIAXIAL STRAIN)	<u>73</u>		<u>73</u>	
ULTRASONIC MEASUREMENTS (SOUND VELOCITY AND ATTENUATION)		<u>75</u>	<u>75</u>	<u>75</u>
MAGNETOMETRY				
COMPENSATED-COIL MAGNETOMETRY			<u>77</u>	<u>77</u>
TORQUE MAGNETOMETRY	<u>79</u>		<u>79</u>	<u>79</u>
VIBRATING-SAMPLE MAGNETOMETER (VSM)	<u>81</u>	<u>81</u>		
MAGNETO-TRANSPORT				
MAGNETO-TRANSPORT WITH IN-SITU SAMPLE ROTATION	<u>82</u>		<u>82</u>	<u>82</u>
CRITICAL CURRENT OF SUPERCONDUCTORS (WIRES, TAPES AND COILS)		<u>84</u>		
"CONTACTLESS" TRANSPORT (TDO, PDO)				<u>85</u>
ELECTRIC POLARIZATION MEASUREMENT			<u>86</u>	
MAGNETIC RESONANCE				
ELECTRON MAGNETIC RESONANCE			<u>87</u>	
NUCLEAR MAGNETIC RESONANCE		<u>89</u>	<u>89</u>	<u>89</u>
ADVANCED SOURCES				
FREE ELECTRON LASER	<u>91</u>			
X-RAY SPECTROSCOPIES				<u>92</u>
NEUTRON DIFFRACTION				<u>94</u>

EXPERIMENTAL TECHNIQUES	HFML NIJMEGEN	LNCMI GRENOBLE	HLD DRESDEN	LNCMI TOULOUSE
OTHER EXPERIMENTS				
MEGA-GAUSS FACILITY (SEMI-DESTRUCTIVE FIELDS > 170 T)				<u>96</u>
LEVITATION		<u>97</u>		
HIGH TEMPERATURE MAGNETISM		<u>97</u>		
ORIENTATION, TEXTURATION		<u>98</u>		


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

OPTICAL IMAGING


FEATURES	HFML NIJMEGEN
LOCAL CONTACT	Dr. Hans ENGELKAMP hans.engelkamp@ru.nl
FIELD RANGE	Up to 33 T
SPECTRAL RANGE	Illumination: Lamps: Halogen, Xenon, Deuterium Different types of lasers: HeNe: 632.8 nm, 543.5 nm Ti:Sapphire: 700 – 1070 nm Solid State: 375 nm, 405 nm, 485 nm, 488 nm, 515 nm, 532 nm, 640 nm, 685 nm, 730 nm. Dye laser: 540 – 655 nm Detection: Sony dxc-990p CCD camera with YH18x6.7 KRS SX7 lens
TEMPERATURE RANGE	278-363 K Stabilized to 0.1 K
SAMPLE SIZE	Optical cuvettes with thickness 0.01 – 0.5 cm (Voight configuration) Microscopy cover slip up to 12.5 cm (Faraday configuration)
SENSITIVITY	Depends on magnification and light source Resolution down to 1 μ m
TYPICAL EXPERIMENT	Transmission microscopy Scattering microscopy Imaging of levitation experiments
SAMPLE HOLDER	Modular design
SAMPLE ENVIRONMENT	Solutions or dispersions
PUBLICATIONS	R. Hemmersbach et al., Astrobiology 14, 205 (2014)

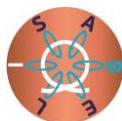
BIREFRINGENCE, DICHROISM AND FARADAY ROTATION

FEATURES	HFML NIJMEGEN	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Hans ENGELKAMP hans.engelkamp@ru.nl	Dr. Remy BATTESTI remy.battesti@lncmi.cnrs.fr
FIELD RANGE	Up to 38 T	Up to 15 T
SPECTRAL RANGE	Excitation Different types of lamps: Halogen, Xenon, Deuterium Different types of lasers (wavelength in nm): HeNe: 632.8, 543.5 Ti:Sapphire: 700 – 1070 Solid State: 375, 405, 485, 488, 515, 532, 640, 685, 730. Dye laser: 540-655 Detection Ocean Optics Spetrometer: 350 nm – 1000 nm Si photodiode : 375 – 1000 nm	Laser Nd:YAG 1064 nm
TEMPERATURE RANGE	278 – 363 K Stabilized to 0.1 K	300 K
SAMPLE SIZE	Optical cuvettes with thickness 0.01 – 1 cm	Gas in 1 m tube
SENSITIVITY	Polarized UV/VIS spectroscopy Absorbance (A) 0.01-2.0 Linear birefringence $\Delta n=10^{-8}$; Linear dichroism: $\Delta A=0.001$	Ellipticity: 10^{-8} Linear birefringence $\Delta n=10^{-19}$
TYPICAL EXPERIMENT	Polarized UV/VIS spectroscopy; Linear birefringence; Linear dichroism Circular dichroism and birefringence on request	Linear birefringence; Circular birefringence on request
SAMPLE HOLDER	Optical cuvettes with thickness 0.01 – 1 cm	2 m tube
SAMPLE ENVIRONMENT	Solutions	Gas
PUBLICATIONS	Linear birefringence & dichroism (sample: gold nanorods): P. G. van Rhee et al., PRL 111, 127202 (2013) Polarized UV/VIS (sample: cyanine dyes): I. O. Shklyarevskiy et al., J. Phys. Chem. B 108, 16386-16391 (2004)	A. Cadène et al., J. Chem. Phys. 142, 124313 (2015)

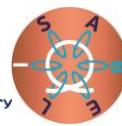
MICRO-PHOTOLUMINESCENCE SPECTROSCOPY AND MICRO-RAMAN SCATTERING IN CONTINUOUS FIELD

FEATURES	HFML NIJMEGEN	LNCMI-GRENOBLE
LOCAL CONTACT	Prof. Dr. Peter CHRISTIANEN peter.christianen@ru.nl	Dr. Clément FAUGERAS clement.faugeras@lncmi.cnrs.fr
FIELD RANGE	Up to 38 T	Up to 31 T
SPECTRAL RANGE	<u>Excitation:</u> Lamps: Halogen, Xenon, Deuterium Lasers (wavelength in nm): HeNe: 632.8, 543.5 Ti:Sapphire: 700 – 1070 C-WAVE 450-650, 900-1300 Solid State: 375, 405, 485, 488, 515, 532, 640, 685, 730. Pulsed Solid State lasers: 405, 485, 640, 730 <u>Detection:</u> Si CCD: 350 nm – 1000 nm InGaAs array: 950 - 1700 nm Si APDs: 375 – 1000 nm	Different laser excitation sources (laser diodes from 390 nm to 785 nm, Dye laser, Ti:Sapph laser, supercontinuum laser with monochromator from 400 nm to 800 nm, white light sources). Circular and linear polarization resolved.
TEMPERATURE RANGE	Temperature range depends on sample holder, optics used and cryostat In general: 0.35 – 290 K	1.2 K – 300 K
SAMPLE SIZE	< 5 mm lateral size, ~ 1 mm or less height	Substrate up to 12x12 mm, thickness below 5 mm, sample minimal size of from 2 – 3 μ m
SENSITIVITY	Spectral resolution depends on spectrometer: 0.3 m focal length single grating: 150, 300, 600, 1200 grooves/mm. 0.5 m focal length - single or triple grating: 150, 1200, 2400 grooves/mm 1.0 m focal length single grating: 1200, 1800 grooves/mm. Temporal resolution: 100 ps with pulsed laser and APD Stray light reduction (Raman): down to 7 wavenumbers	Different spectrometers available for high spectral resolution, high throughput, spectral range from 400 nm to 1600 nm (Si and InGaAs camera), photon correlation experiments (APD) and time resolution (~500 ps)
TYPICAL EXPERIMENT	Polarized (Micro)Photoluminescence (excitation) Polarized (Micro)Raman spectroscopy Fluorescence Line Narrowing (FLN) Polarized Photoluminescence lifetime measurements Polarized Reflectivity spectroscopy	Micrometer spatial resolution for magneto-photoluminescence, magneto-Raman scattering ($E > 1 - 2$ meV), magneto-PLE, magneto-reflectivity, magneto-absorption, possibility to electrically contact the sample (gate, etc.). Spatial mapping of optical

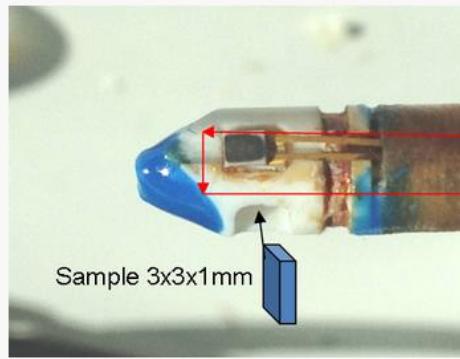
FEATURES	HFML NIJMEGEN	LNCMI-GRENOBLE
		response, evolution with magnetic field, with temperature.
SAMPLE HOLDER	Sample mounted on xyz-Attocube positioner with feedback (50 mm bore 30 T magnet) or without feedback (32 mm bore 38 T magnet) Faraday and Voigt configuration	Metallic, non-magnetic. Sample attached with regular glue or silver epoxy. Mounted on X-Y-Z piezo positioners.
SAMPLE ENVIRONMENT	Helium exchange gas	Helium exchange gas
PUBLICATIONS	Raman (sample: PbMnBO4): M. A. Prosnikov et al., Phys. Rev. Res. 4, 013004 (2022) Polarized photoluminescence (sample: InP nanowires): D. Tedeschi et al., ACS Nano 14, 11613 (2020) Photoluminescence (sample: TIPS tetracene): S. L. Bayliss et al., PNAS 115, 5077 (2018) Microphotoluminescence (sample: WSe2/MoSe2 heterostructure): P. Nagler et al., Nature Comm. 8, 1551 (2017) Fluorescence Line narrowing (Sample: colloidal nanocrystals): A. Granados del Aguilera et al., ACS Nano 8, 5921–5931 (2014) Photoluminescence lifetimes (Sample: CdSe/CdS Colloidal Nanoplatelets): E. V. Shornikova et al., Nano Lett. 18, 373–380 (2018)	Magneto-PL: A. Delhomme et al., 2D Materials 7, 041002 (2020) Magneto-Raman: S. Berciaud et al., Nano Lett. 14, 4548–4553 (2014) Time resolved magneto-PL: T. Neumann et al., Nat. Commun. 12, 3489 (2021)

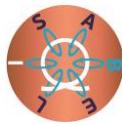


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106


MICRO-PHOTOLUMINESCENCE SPECTROSCOPY AND MICRO-RAMAN SCATTERING IN PULSED FIELD

FEATURES	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Paulina PLOCHOCKA paulina.plochocka@lncmi.cnrs.fr
FIELD RANGE	Up to 90 T
SPECTRAL RANGE	Si CCD, ~350 nm – 950 nm InGaAs array detectors: 950 - 1700 nm or 1000 – 2200 nm.
TEMPERATURE RANGE	1.2 – 290 K
SAMPLE SIZE	< 2 mm lateral size, ~ 1 mm or less height (other arbitrarily shaped samples can also be accommodated)
SENSITIVITY	Usually limited by spectral resolution of the spectrometer, most commonly used 0.3 m focal length with 150, 300 or 600 grooves/mm. Resolution ~0.8 – 0.2 nm. Longer spectrometer can be also made available.
TYPICAL EXPERIMENT	Photoluminescence and reflectivity spectroscopy
SAMPLE HOLDER	Reflectivity sample holder with typical sample inside Samples are mounted and fixed by mechanical clamping on a cylindrical zirconia holder
SAMPLE ENVIRONMENT	Gaseous helium from 300 K down to 4 K, liquid helium below in sample holder
PUBLICATIONS	Reflectivity (sample: single crystal perovskites): Z. Yang et al., J. Phys. Chem. Lett. 8, 1851 (2017) Photoluminescence (sample: TIPS tetracene): S. L. Bayliss et al., PNAS 115, 5077 (2018)



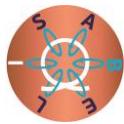

(FAR-) INFRARED SPECTROSCOPY IN CONTINUOUS FIELD

FEATURES		HFML NIJMEGEN	LNCMI-GRENOBLE
LOCAL CONTACT		Dr. Hans ENGELKAMP hans.engelkamp@ru.nl	Dr. Milan ORLITA milan.orlita@lncmi.cnrs.fr
ELD RANGE		Up to 33 T	Up to 36 T
SPECTRAL RANGE		5 – 10000 cm ⁻¹ (Bruker Vertex 80v)	Identical to FIR, MIR and NIR ranges of the Bruker Vertex 80v spectrometer (5 – 10 000 cm ⁻¹)
TEMPERATURE RANGE		1.3 – 50 K	1.5 – 4.2 K (reflectivity also at 77 K and RT)
SAMPLE SIZE		88x3 mm ³ or smaller	Disc-shaped, maximal dimensions Ø5 mm and height 5 mm, samples with other (but smaller than disc indicated) shapes can also be accommodated
SENSITIVITY		<1 %	Down to 0.1 % of the relative change with the magnetic field
TYPICAL EXPERIMENT		Magneto-transmission in Faraday or Voight configuration	Magneto-transmission (absolute, relative) Magneto-reflectivity (relative)
SAMPLE HOLDER			Drawing of the sample holder for absolute magneto-transmission experiments (for sample up to Ø5 mm)
SAMPLE ENVIRONMENT		Helium exchange gas	Sample in the helium exchange gas
PUBLICATIONS		<p>Z. Wang et al., Nature 554, 219 (2018)</p> <p>I. Kézsmárki et al., Nat. Commun. 5, 3203 (2014)</p> <p>U. Nagel et al., PRL 110, 257201 (2013)</p> <p>B. N. Murdin et al., Nat. Commun. 4, 1469 (2013)</p>	<p>Graphene-based materials: M. Orlita et al., C. R. Phys. 14, 78 (2013)</p> <p>Semimetals, Dirac matter: M. Orlita et al., Nature Phys. 10, 233 (2014)</p> <p>Semiconductors: C Faugeras et al., PRB 80, 073303 (2009)</p> <p>Molecular magnets: Y Rechkemmer et al., Nature Comm. 7, 10467 (2016)</p> <p>Multiferroics: J. Vermette et al., PRB 85, 134445 (2012)</p> <p>Superconductors: B. P. P. Mallett et al., PRB 94, 180503 (2016)</p>

(FAR-) INFRARED SPECTROSCOPY IN PULSED FIELD

FEATURES	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Paulina PLOCHOCKA paulina.plochocka@lncmi.cnrs.fr
FIELD RANGE	Up to 80 T
SPECTRAL RANGE	Si CCD, ~350 nm – 950 nm InGaAs array detectors: 950 - 1700 nm or 1000 – 2200 nm.
TEMPERATURE RANGE	1.2 – 290 K
SAMPLE SIZE	< 3 mm lateral size, ~ 1 mm or less height (other arbitrarily shaped samples can also be accommodated) minimum sample size limited by beam size (1mm) Space for circular polarization optics is available
SENSITIVITY	Usually limited by spectral resolution of the spectrometer, most commonly used 0.3 m focal length with 150, 300 or 600 grooves/mm. Resolution ~0.8 – 0.2 nm. Longer spectrometer can be also made available.
TYPICAL EXPERIMENT	Transmission spectroscopy
SAMPLE HOLDER	
SAMPLE ENVIRONMENT	Gaseous helium from 300 K down to 4 K, liquid helium below A. A. Mitioglu et al., PRB 93, 165412 (2016) A. Miyata et al., Nature Physics 11, 582 (2015) K. Gamkowski et al., EES 9, 962 (2016) A. M. Soufiani et al., EES 10, 1358 (2017) Z. Yang et al., ACS Energy Lett. 2, 1621 (2017)
PUBLICATIONS	

ULTRAFAST DYNAMICS

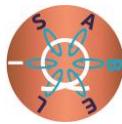

FEATURES	HFML NIJMEGEN
LOCAL CONTACT	Prof. Dr. Peter CHRISTIANEN peter.christianen@ru.nl
FIELD RANGE	Up to 37.5 T
SPECTRAL RANGE	Excitation: Different types of pulsed lasers (wavelength in nm): Ti:Sapphire oscillator: 100 fs @ 80 MHz: 690 – 1040 OPA: 100 fs @ 1 kHz: 290- 1160 Balanced photo-detector: Si diode: 375 – 1000 nm
TEMPERATURE RANGE	Temperature range depends on sample holder and cryostat In general: 1.5 ... 290 K
SAMPLE SIZE	< 5 mm lateral size, ~ 1 mm or less height
RESOLUTION	Temporal resolution: 100 fs MOKE: 2 mdeg
LIMITATIONS	
TYPICAL EXPERIMENT	Femtosecond pump-probe experiment: magneto-optical Kerr effect (MOKE) or reflectivity
SAMPLE HOLDER	Sample mounted on xyz-Attocube positioner with feedback (50 mm bore 30 T magnet) or without feedback (32 mm bore 38 T magnet) Faraday and Voigt configuration
SAMPLE ENVIRONMENT	Helium exchange gas
PUBLICATIONS	Femtosecond MOKE (sample: iron garnet): I. A. Dolgikh et al., Appl. Phys. Lett. 120, 012401 (2022) Femtosecond MOKE (sample: GdFeCo), A. Pogrebna et al., PRB. 100, 174427 (2019) , J. Becker et al., PRL 118, 117203 (2017) Femtosecond MOKE & reflectivity (sample: FeRh), I. A. Dolgikh et al., npj spintronics 3, 5 (2025)

MAGNETOCALORIC EFFECT

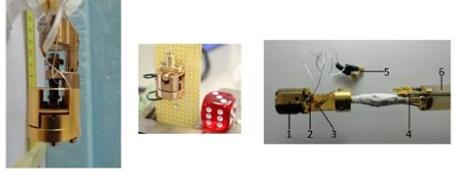
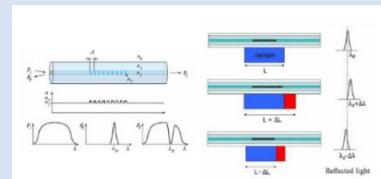
FEATURES	HZDR-HLD DRESDEN
LOCAL CONTACT	Dr. Tino GOTTSCHALL t.gottschall@hzdr.de Dr. Catalina SALAZAR MEJIA c.salazar-mejia@hzdr.de
DESCRIPTION	The magnetocaloric effect is measured directly by a differential copper – constantan thermocouple, having one junction “sandwiched” within the sample, and another one fixed nearby, and exposed to the same conditions as the sample.
FIELD RANGE	Up to 60 T
TEMPERATURE RANGE	10 – 360 K
SAMPLE SIZE	Typically, two plates with < 4x4 mm ² , 2 mm height (other arbitrarily shaped samples can also be accommodated, but two flat surfaces are essential for mounting the thermocouple) Minimum sample size 1x1x1 mm ³ The samples can be mounted with a defined orientation
SENSITIVITY	0.01 K absolute
TYPICAL EXPERIMENT	Direct adiabatic temperature change ΔT_{ad} (H) ΔT_{ad} as a function of the initial temperature Field sweep rates can be varied between 200 – 8000 T/s for time-dependent studies of the magnetocaloric effect. Rate: < 3 K/min (controlled, typical)
SAMPLE HOLDER	The sample is fixed by using GE varnish. The holder is surrounded by a heater.
SAMPLE ENVIRONMENT	Vacuum from 375 K down to 10 K
PUBLICATIONS	T. Gottschall et al., PRB 99, 134429 (2019) C. Salazar Mejia, Appl. Phys. Lett. 110, 071901 (2017)

SPECIFIC HEAT MEASUREMENT

FEATURES	HFML NIJMEGEN	LNCMII-GRENOBLE
LOCAL CONTACT	Dr. Nigel HUSSEY nigel.hussey@ru.nl	Dr. Albin DE MUER albin.demuer@lncmi.cnrs.fr
FIELD RANGE	Up to 37 T	Up to 36 T
TEMPERATURE RANGE	500 mK – 40 K	500 mK – 40 K
SAMPLE SIZE	500x500x100 μm^3 (ideal)	500x500x100 μm^3 (ideal)
SENSITIVITY	10^{-3} (accuracy 10^{-2})	10^{-3} (accuracy 10^{-2})
SAMPLE HOLDER	BareChip cernox	BareChip cernox
SAMPLE ENVIRONMENT	Vacuum	Vacuum

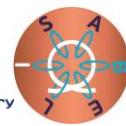


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

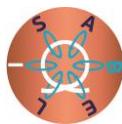



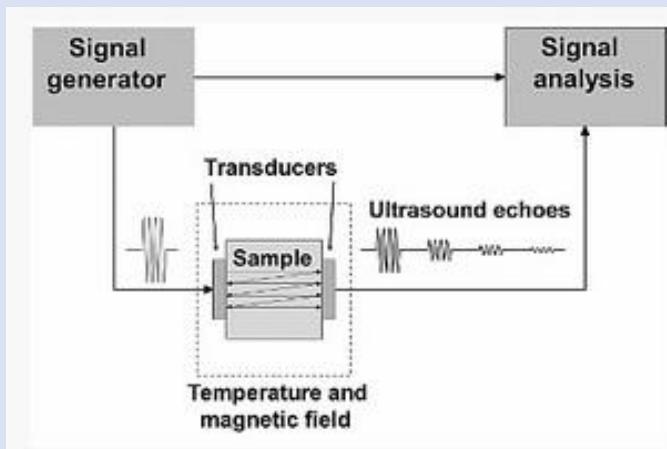
THERMOPOWER AND NERNST-ETTINGHAUSEN MEASUREMENT

FEATURES	HFML NIJMEGEN	LNCMI-GRENOBLE
LOCAL CONTACT	Dr. U. ZEITLER, Dr. S. WIEDMANN steffen.wiedmann@ru.nl	Dr. G. SEYFARTH, Dr. D. LEBOEUF gabriel.seyfarth@lncmi.cnrs.fr
FIELD RANGE	Up to 38 T	Up to 35 T
TEMPERATURE RANGE	50 K – 0.4 K	50 K – 400 mK or dilution
SAMPLE SIZE	5 mm x 2 mm	min. 0.5 mm, max. 2.0 mm
SENSITIVITY	Voltage noise level: < 50 nV with digital nanovoltmeter (Keithley 2182A), 5 nV with analogue nanovoltmeter (N11a from EM Electronics) Thermometers & heater: RuO chip resistor with approx. 3.3 kΩ resistance at room temperature	Voltage noise level: few nV at low T and low B, about 10 nV at highest field
TYPICAL EXPERIMENT	Seebeck + Nernst effect	Seebeck + Nernst coefficients
SAMPLE HOLDER	Ag	Ag
SAMPLE ENVIRONMENT	Vacuum	Vacuum
PUBLICATIONS	A. Jost et al., PNAS 114 3381-3386 (2017)	



MAGNETOSTRICTION AND THERMAL EXPANSION (UNDER UNIAXIAL STRAIN)

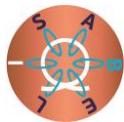

FEATURES	HFML NIJMEGEN	HZDR-HLD DRESDEN
LOCAL CONTACT	Dr. Steffen WIEDMANN steffen.wiedmann@ru.nl	Dr. Yurii SKOURSKI skourski@hzdr.de
DESCRIPTION	<p>Capacitive dilatometry is the standard method for measuring thermal expansion and magnetostriction in DC magnetic fields. At HFML, we have</p> <ul style="list-style-type: none"> - standard dilatometer (50 mm bore) - uniaxial strain dilatometer (50 mm bore) - mini-dilatometer (32 mm bore) with in-situ rotation (50 mm bore) - uniaxial ministain dilatometer (32 mm bore) <p>(left) Dilatometer for 50 mm bore, (middle) dilatometer for 32 mm bore, (right) dilatometer for 32 mm bore on stick.</p>	<p>An optical fiber Bragg grating (FBG) method is used to measure magnetostriction in pulsed and continuous magnetic fields. The relative length change $\Delta L/L$ can be obtained from the shift of the wavelength of the reflected light.</p>
FIELD RANGE	Up to 30 T in 50 mm bore Up to 38 T in 32 mm bore	Up to 85 T
TEMPERATURE RANGE	0.3 – 4.2 K (³ He system) in 50 mm bore 1.2 K – 300 K (⁴ He system) in 50 mm bore 1.2 K – 30 K (⁴ He system) in 32 mm bore	Standard temperature range is 1.4 – 300 K. Measurements down to ~0.6 K with a ³ He system are also possible.
SAMPLE SIZE	In 50 mm bore < 3x3 mm ² , thickness L < 2 mm In 32 mm bore < 2x2 mm ² , thickness L < 1.5 mm	The sample size should be > 1 mm. The samples can be mounted with a defined orientation
SENSITIVITY	$\Delta L/L < 10^{-7}$	Resolutions of about $\Delta L/L \sim 10^{-7}$ are achievable.
TYPICAL EXPERIMENT	$\Delta L/L(B)$ – magnetostriction at constant T: Field sweep rates (typical) <0.5 – 1 T/min; $\Delta L/L(T)$ – thermal expansion at constant B: T sweep rates (typical) <0.5 – 1 K/min;	
SAMPLE ENVIRONMENT	³ He or ⁴ He contact gas	Gaseous helium from 270 K down to 4 K, liquid helium below


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

FEATURES	HFML NIJMEGEN	HZDR-HLD DRESDEN
PUBLICATIONS	<u>R. Küchler <i>et al.</i>, Rev. Sci. Instrum. 88, 083903 (2017)</u> <u>D. LeBoeuf <i>et al.</i>, Nature Commun. 8, 1337 (2017)</u> <u>M. Keshavarz <i>et al.</i>, Adv. Mater. 31, 1900521 (2019)</u> <u>L. Rossi <i>et al.</i>, PRL 123, 027205 (2019)</u>	<u>R. Daou <i>et al.</i>, Rev. Sci. Instrum. 81, 033909 (2010)</u>

ULTRASONIC MEASUREMENTS (SOUND VELOCITY AND ATTENUATION)

FEATURES	LNCMI-TOULOUSE	HZDR-HLD DRESDEN	LNCMI-GRENOBLE
LOCAL CONTACT	Dr. Cyril PROUST cyril.proust@lncmi.cnrs.fr	Dr. Sergei ZHERLITSYN s.zherlitsyn@hzdr.de	Dr. David LEBOEUF david.leboeuf@lncmi.cnrs.fr
DESCRIPTION	<p>The ultrasound technique is highly sensitive to phase transitions in high magnetic field. The sound velocity and attenuation are measured using a pulse-echo method with a phase-sensitive detection technique which is available both in DC and pulsed field.</p>		
ULTRASOUND FREQUENCY		5 – 900 MHz	
FIELD RANGE	Up to 90 T	Up to 90 T	Up to 36 T
TEMPERATURE RANGE	0.5 – 300 K	0.02 – 300 K	0.05 – 325 K
SAMPLE SIZE	Typically, 1 mm length, in the direction of sound propagation	Typically sizes 0.6 – 5 mm The samples can be mounted with a defined orientation	Typically, 1 mm length, in the direction of ultrasound propagation
SENSITIVITY	$\sim 10^{-5}$ for the relative change of sound velocity in pulsed field	The resolution for the relative sound-velocity change is 10^{-5} in pulsed fields, 10^{-6} in DC fields and 10^{-3} for the sound attenuation	Depends a lot on the echo pattern: 1 ppm in sound velocity change in the best conditions
TYPICAL EXPERIMENT	Field sweeps at fixed temperature	Transmission experiments The technique is available both in DC and pulsed field	Both, temperature sweeps and field sweeps are possible
SAMPLE HOLDER	Please, contact the local contacts.	Please, contact the local contacts.	The sample holder is a simple plate with a thermometer connected to it. The probe is equipped with two low attenuation coax cables, allowing to perform reflection or transmission experiments.

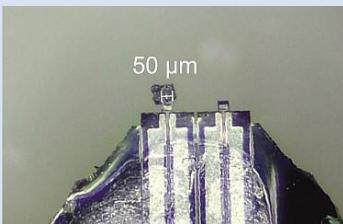


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

FEATURES	LNCMI-TOULOUSE	HZDR-HLD DRESDEN	LNCMI-GRENOBLE
SAMPLE ENVIRONMENT	Gaseous helium from 300 K down to 4 K, liquid helium down to 1.4 K (0.5 K for ^3He)	Gaseous helium from 300 K down to 4 K, liquid helium down to 0.5 K	Specific sample mounting can be achieved if required. VTI environment between 325 and 1.2 K. For lower temperatures, ^3He and dilution refrigerator can be used. Rotation available.
PUBLICATIONS	In pulsed fields: D. LeBoeuf et al., Nature Physics 9, 79 (2013) In zero field: S. Benhabib et al., Nature Phys. 17, 194 (2021)	S. Zherlitsyn et al., Low Temp. Phys. 40, 123 (2014) Z. Wang et al., PRL 120, 207205 (2018) V. Tsurkan et al., Science Advances 3, e1601982 (2017) A. Hauspurg et al., PRB 109, 144415 (2024)	Superconductors: F. Laliberté et al., npj Quantum Materials 3, 11 (2018) Semi-metals: D. LeBoeuf et al., Nat. Commun. 8, 1337 (2017)

COMPENSATED COIL MAGNETOMETRY

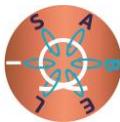
FEATURES	LNCMI-TOULOUSE MEGAGAUSS	LNCMI-TOULOUSE	HZDR-HLD DRESDEN
LOCAL CONTACT	Dr. Oleksiy DRACHENKO oleksiy.drachenko@lncmi.cnrs.fr	Dr. William KNAFO william.knafo@lncmi.cnrs.fr	Dr. Yurii SKOURSKI skourski@hzdr.de
FIELD RANGE	Up to 150 T	Up to 70 T	Up to 85 T
TEMPERATURE RANGE	4 – 300 K	1.5 K – 300 K	1.4 – 300 K ³ He option with a base temperature of ~0.5 K is available on request
SAMPLE SIZE	Typically, needle-shaped single crystal sample with < 1 mm diameter, 2 mm length (Powder sample is also fine) (Metallic sample gets a strong effect of eddy currents)	Sample should fit in a 1.4 mm tube, typical sample height = 4 mm, typical mass = 20–40 mg	Sample should fit in a 1.8 mm tube, typical sample height = 4 mm; sample holders are provided in order to mount samples in a defined orientation
SENSITIVITY		Sensitivity is ok for fields below 40 T, but poor for higher fields, new prototypes are under development	Down to 10^{-6} J/T (10^{-3} emu) net magnetic moment. The sensitivity depends on the shape of the magnetization curve.
TYPICAL EXPERIMENT	Sweep rates (typical) 300 T/μsec Adiabatic magnetisation		Magnetisation M (B) Raise time 7 – 40 ms.
SAMPLE HOLDER	Sample holder with typical sample inside. Sample is mounted into a kapton tube.		
SAMPLE ENVIRONMENT	Gaseous helium from 300 K down to 4 K		Gaseous helium from 270 K down to 4 K or liquid helium below


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

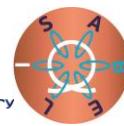
FEATURES	LNCMI-TOULOUSE MEGAGAUSS	LNCMI-TOULOUSE	HZDR-HLD DRESDEN
PUBLICATIONS	<p>Frustrated magnets :</p> <p>A. Miyata et al., PRB 87, 214424 (2013)</p> <p>S. Takeyama et al., JPSJ 81 014702 (2012)</p>	<p>Heavy Fermions :</p> <p>W. Knafo et al., Nature Commun. 7, 13075 (2016)</p> <p>K. Kuwahara et al., PRL 110, 216406 (2013)</p>	<p>Y. Skourski et al., PRB 83, 214420 (2011)</p> <p>Tsurkan et al., Sci. Adv. 3, e1601982 (2017)</p>

TORQUE MAGNETOMETRY

FEATURES	LNCMI-TOULOUSE	HZDR-HLD DRESDEN	HFML NIJMEGEN
LOCAL CONTACT	Dr. David VIGNOLLES da-vid.vignolles@lncmi.cnrs.fr	Dr. Toni HELM t.helm@hzdr.de	Dr. Steffen WIEDMANN steffen.wiedmann@ru.nl Dr. Uli ZEITLER Uli.Zeitler@ru.nl
FIELD RANGE	Up to 90 T	Up to 90 T	Up to 38 T
TEMPERATURE RANGE	0.5 K – 300 K (maximum field 90 T) 1.4 K – 300 K (maximum field 60 T or 70 T - rotating insert)	1.4 K - 300 K (max field 90 T with pulse duration of 10 ms) 0.6 K – 300 K (max field 62 T & 70 T with pulse duration of 25 ms & 150 ms)	0.3 – 80 K (3He system) 1.4 – 380 K (flow cryostat) 0.05 – 4 K (dilution refrigerator, on request) (Upper temperature limit depends on signal strength)
SAMPLE SIZE	100 µm x 50 µm x 20 µm	The size of the cantilever is 50 µm x 120 µm, which requires samples of similar size.	< 4 mm diameter, 1 mm height (other arbitrarily shaped samples can also be accommodated). Minimum sample size limited by sensitivity. The samples can be mounted with a defined orientation Sample weight limited by signal strength
SENSITIVITY	$\sim 10^{-13} \text{ Am}^2$	$\sim 10^{-13} \text{ Am}^2$	10^{-9} J/T absolute
TYPICAL EXPERIMENT	Torque measurement versus field for different temperatures or angles	Torque measurement versus field for different temperatures or angles. Various magnet designs provide different pulse durations and shapes.	Magnetisation M (B,T,θ) Torque (B,T,θ) sweep rates (typical) 0.5 – 2 T/min
SAMPLE HOLDER	Sample is fixed (vacuum grease or epoxy) at the end of the cantilever beam.	Typical sample attached to a cantilever (left) with a reference cantilever on the right.	 Left: Typical cantilever used in experiments Right: Cantilever platform on rotator with single axis rotation
SAMPLE ENVIRONMENT	Gaseous helium from 300 K down to 4 K, liquid helium or ^3He below	Gaseous helium from 300 K down to 4 K, liquid helium or ^3He below	In-situ rotation available with $\theta = \pm 100^\circ$ ($\theta = 0^\circ$ field perpendicular to cantilever (see i and ii))

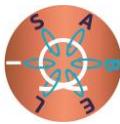

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory



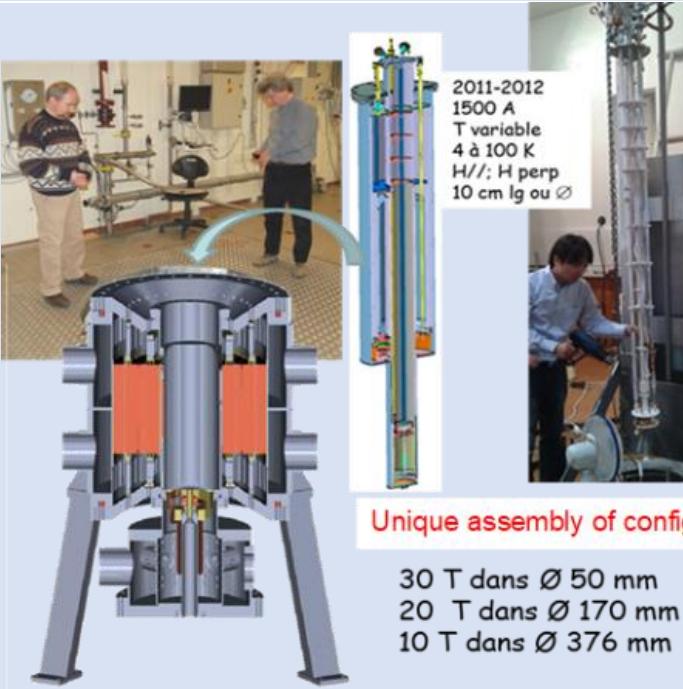
FEA-TURES	LNCMI-TOULOUSE	HZDR-HLD DRESDEN	HFML NIJMEGEN
PUBLICA-TIONS	C. Jaudet et al., PRL 100, 187005 (2008) Y. Klein et al., PRB 97, 075140 (2018) C. Putzke et al., PRL 108, 047002 (2012)	E. Ohmichi et al., Rev. Sci. Instrum. 73, 3022 (2002)	Henrik Grundmann et al., New Journal of Physics 18, 033001 (2016)

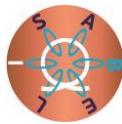
VIBRATING-SAMPLE MAGNETOMETER (VSM)

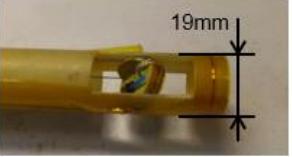
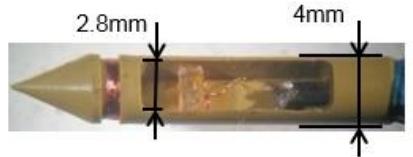

FEATURES	LNCMI-GRENOBLE	HFML NIJMEGEN
LOCAL CONTACT	Dr. Gabriel SEYFARTH gabriel.seyfarth@lncmi.cnrs.fr	Dr. Uli ZEITLER Uli.Zeitler@ru.nl
FIELD RANGE	Up to 35 T	Up to 33 T
TEMPERATURE RANGE	20K – 1.3K (extension planned)	1.2 – 350 K
SAMPLE SIZE	max: 1.5 mm width and length, less for thickness to avoid inhomogeneous field within sample (500µm), single crystals	Typically, disc shaped pallets with < 4 mm diameter, 1 mm height (other arbitrarily shaped samples can also be accommodated). Minimum sample sized limited by sensitivity. The samples can be mounted with a defined orientation
SENSITIVITY	5*10 ⁻⁷ emu (improvements ongoing)	
TYPICAL EXPERIMENT	M(H), anomalies or quantum oscillations	Magnetic materials, hysteresis loops, phase transitions, critical currents in superconductors. Isothermal magnetisation M (B) with (typical) sweep rates 0.5 – 5 T/min Field cooling M (T) – rate: > 10 K/min (uncontrolled) 0.1 – 3 K/min (controlled, typical)
SAMPLE HOLDER	CuBe sample platform, single crystals attached by apiezon grease.	 VSM sample holder with typical sample inside. Samples are mounted and fixed by mechanical clamping into a cylindrical plastic holder.
SAMPLE ENVIRONMENT	Exchange gas (He)	He flow (gas, 4.2 K – 350 K) or He liquid (1.3 – 4.2 K)
PUBLICATIONS		Magnetic nanoparticles: M. Norek et al., J. Am. Chem. Soc, 130, 5335 (2008) Exchange bias in ferrimagnets: A. K. Nayak et al., Nat. Mater. 14, 679 (2015) Martensitic transformation kinetics: D. San Martin et al., Mater. Sci. Eng. A 527, 5241(2010) ; P. Lázpita et al., J. Alloys Compd. 874, 159814 (2021) Molecular magnets: E. Kampert et al., Inorg. Chem. 48, 11903 (2009) Multiferroics: V. Hutanu et al., PRB 89, 064403 (2014)

MAGNETO-TRANSPORT MEASUREMENTS WITH IN-SITU SAMPLE ROTATION

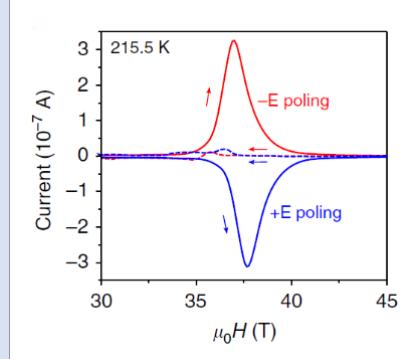
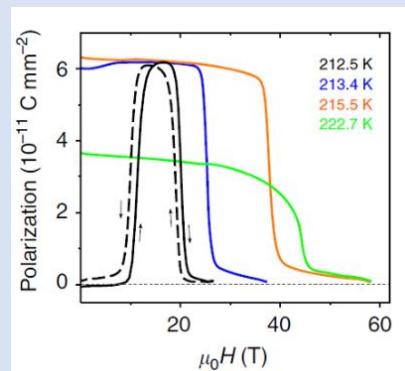
FEATURES	HFML NIJMEGEN	HZDR-HLD DRESDEN	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Steffen WIEDMANN steffen.wiedmann@ru.nl Dr. Uli ZEITLER Uli.Zeitler@ru.nl	Dr. Toni HELM t.helm@hzdr.de Dr. Tommy KOTTE t.kotte@hzdr.de	Dr. Walter ESCOFFIER walter.escoffier@lncmi.cnrs.fr
FIELD RANGE	Up to 38 T	Up to 90 T	Up to 70 T
TEMPERATURE RANGE	0.3 – 30 K (³ He system) 1.4 – 380 K (flow cryo-stat) 0.05 – 4 K (dilution refrigerator, on request)	300 K down to 1.3 K. Lower temperatures down to ~0.6 K are possible using a ³ He system with a 24 mm bore coil (62 & 70 T)	Standard: 1.6 – 350 K On option: 350 mK – 350 K
SAMPLE SIZE	i) sample in LCC-20 chip carrier < 5x5 mm ² (inside LCC-20 dye); ii) sample directly mounted on platform < 10 x 10 mm ² ; < 1 mm thickness (typical) sample resistance: $\mu\Omega$ – M Ω (AC using lock-in amplifiers) < 1 G Ω (DC, typically, using nanovoltmeters)	The maximum sample space available is 10 x 6 x 2 mm. Angular-dependent measurements and measurements in 95 T coils can be performed on two samples simultaneously, however restricting their size to 4 x 3 mm.	Typical samples: nano-devices or 2DEGs on chip Chip size: maximum 3.5 x 3.5 mm ²
SENSITIVITY		Relative resolutions of 10 ⁻⁴ are achieved.	
TYPICAL EXPERIMENT	R(B,T,θ,Vg,...) sweep rates (typical) 0.5 – 5 T/min Bias current: < 1 nA – 10 mA (typical, depending on sample impedance) Gate voltage: ±100 V (typical) Rotation holders with and without LCC-20. Two-different rotation axis configurations can be chosen: out-of-plane (right) or in-plane (left).	Typical AC-excitation currents range from 1 μ A to 100 mA with frequencies between 2 and 200 kHz.	Magneto-resistance and Hall effect - Current or voltage biasing - DC or AC (lock-in at 10kHz minimum frequency) measurement - Gate voltage control (top and/or back gate) - Safe handling of electrostatic-sensitive devices - Sample tilting with respect to B (perpendicular to parallel field) - UV and visible light illumination
SAMPLE HOLDER	a) rotate field from parallel to perpendicular orientation b) rotate field inside sample plane	The standard sample holder can accommodate up to three samples when both	The chip is glued on a ceramic holder which is mounted on a

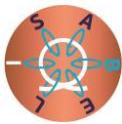



FEATURES	HFML NIJMEGEN	HZDR-HLD DRESDEN	LNCMI-TOULOUSE
	(azimuthal rotation) c) fixed angle ($\vartheta=0^\circ$), sample perpendicular to field	longitudinal resistivity and Hall effect are measured.	commercial 10 or 8-pin connector. The contact pads are connected to those on the ceramic either with wedge bonding or manually with silver-pasted gold wire.
SAMPLE ENVIRONMENT		Gaseous helium from 300 K down to 4 K, liquid helium or ^3He below	Helium or vacuum (only for experiments up to 60 T in large-bore coils)
PUBLICATIONS	Ising superconductivity: J. M. Lu et al., PNAS 115, 3551 (2018) ; J. M. Lu et al., Science 350, 1353 (2015) Fractal states in graphene: R. K. Kumar et al., PNAS 115, 5135 (2018) Quantum Oscillations in ZrSiS: S. Pezzini et al., Nature Phys. 14, 178 (2018) FQHE and Wigner solid in ZnO: D. Maryenko et al., Nature Commun. 9, 4356 (2018) QHE in InSe: D. A. Bandalirin et al., Nat. Nanotechnol. 12, 223 (2017)	T. Helm et al., PRB 92, 094501 (2015) C. Shekhar et al., Nature Phys. 11, 645 (2015) F. Kisslinger et al., Nature Phys. 11, 650 (2015)	Exfoliated graphene: A. Kumar et al., PRL 107, 126806 (2011) SiC graphene: M. Yang et al., PRL 117, 237702 (2016) Graphene nanoribbons: R. Ribeiro et al., PRL 107, 086601 (2011) Semiconducting nanowire: F. Vigneau et al., PRL 112, 076801 (2014) Topological insulators: L. Veyrat et al., Nano Letters 15, 7503–7507 (2015) 2DEG at complex oxide interfaces: M. Yang et al., Appl. Phys. Lett. 109, 122106 (2016) Bottom-up conducting nano-objects: B. Cury Camargo et al., Nanoscale 9, 14635 (2017)

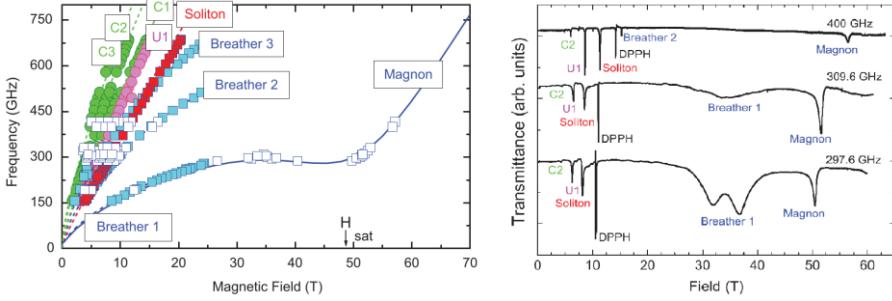


CRITICAL CURRENT OF SUPERCONDUCTORS (WIRES, TAPES AND COILS)

FEATURES	LNCMI-GRENOBLE
LOCAL CONTACT	Dr. Xavier CHAUD xavier.chaud@lncmi.cnrs.fr
DESCRIPTION	<ul style="list-style-type: none">• Wire and tape characterisation• Solenoid characterisation• Dipole characterisation
FIELD RANGE	Up to 30 T
TEMPERATURE RANGE	4.2 K
SAMPLE SIZE	3 cm long
SENSITIVITY	Electrical field criterion 1 μ V/cm
TYPICAL EXPERIMENT	Transport measurement of J_c from 15 to 30 T at different angles on highly anisotropic REBaCuO coated conductor tapes
SAMPLE HOLDER	Ex-situ rotation
SAMPLE ENVIRONMENT	Liquid helium
PUBLICATIONS	T. Benkel et al., Eur. Phys. J. Appl. Phys. 79, 30601 (2017)
ADDITIONAL INFORMATION	


CONTACTLESS TRANSPORT

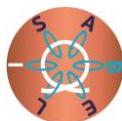
FEATURES	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Nicolas BRUYANT nicolas.bruyant@lncmi.cnrs.fr
FIELD RANGE	Up to 90 T
TEMPERATURE RANGE	0.5 – 300 K
SAMPLES SIZES	<p>Any type of form. Preferably circular or square. Any thickness. The size depends on the inside diameter of the cryostats depending on the desired field value. Two samples can be measured simultaneously.</p> <p>For 90 T, the sample size should not exceed 1 * 1 mm².</p> <p>For 70 and 80 T, the sample size can be up to 2 * 2 mm².</p> <p>For 60 T, the sample size can be up to 4 * 4 mm².</p> <p>Ability to make an angular dependency up to 60 T. Precision: 1°.</p>
SENSITIVITY AND FREQUENCY	0.1 ppm using TDO @ 10 – 50 MHz 1 ppm using transmission technique @ 0.1 – 2 GHz
TYPICAL EXPERIMENT	Frequency dependence vs field Frequency dependence vs temperature (at 0 field)
SAMPLE HOLDER	<p>Samples are glued into the Rf coil</p> <div style="display: flex; justify-content: space-around;"> <div style="text-align: center;"> <p>19mm</p> </div> <div style="text-align: center;"> <p>2.8mm</p> <p>4mm</p> </div> </div> <p>Rotating sample holder : 0 to 90°. Up to 60T – 1.5 K</p> <p>Sample holder. Up to 90T – 1.5 K</p>
SAMPLE ENVIRONMENT	Gaseous helium from 300 K down to 0.5 K, liquid helium below
PUBLICATIONS	<p>L. Drigo et al., Eur. Phys. J. Appl. Phys. 52, 10401 (2010)</p> <p>M. D. Watson et al., PRB 89, 205136 (2014)</p>



ELECTRIC POLARIZATION MEASUREMENT

FEATURES	HZDR-HLD DRESDEN
LOCAL CONTACT	Dr. Yurii SKOURSKI skourski@hzdr.de
FIELD RANGE	Up to 85 T
TEMPERATURE RANGE	1.4 – 270 K
SAMPLE SIZE	<p>The sample should be shaped as a plane-parallel plate, with a surface area of few square millimetres, and thickness 0.1 – 1 mm. The polling voltage ranges +/- 500 V.</p> <p>Minimum sample size 1 x 1 x 1 mm³</p> <p>The samples can be mounted with a defined orientation</p>
TYPICAL EXPERIMENT	<p>Graph showing Current (10^{-7} A) versus $\mu_0 H$ (T) for a CuO single crystal at 215.5 K. The plot shows two curves: a red curve for -E poling and a blue curve for +E poling. The current peaks at approximately 35 T for the -E poling curve and -35 T for the +E poling curve.</p> <p>Graph showing Polarization ($10^{-11} \text{ C mm}^{-2}$) versus $\mu_0 H$ (T) for a CuO single crystal at temperatures 212.5 K, 213.4 K, 215.5 K, and 222.7 K. The polarization curves show a sharp increase at low magnetic fields and a plateau at higher fields, with the plateau value decreasing as the temperature increases.</p>
SAMPLE ENVIRONMENT	Gaseous helium from 270 K down to 4 K, liquid helium below
PUBLICATIONS	Z. Wang et al., Nat. Commun. 7, 10295 (2016)

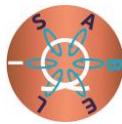
ELECTRON MAGNETIC RESONANCE


FEATURES	HZDR-HLD DRESDEN
LOCAL CONTACT	Dr. Sergei ZVYAGIN s.zvyagin@hzdr.de
DESCRIPTION	<p>Electron Magnetic Resonance (EMR) covers a variety of magnetic resonance techniques associated with the electron. The most popular of those techniques is Electron Paramagnetic/Spin Resonance (EPR/ESR).</p> <p>In our lab, ESR experiments can be performed in pulsed magnetic fields up to 70 T using a transmission-probe multi-frequency spectrometer operated in the 0.1 - 9 THz frequency range, covered by (i) VDI microwave chains (product of Virginia Diodes Inc.), (ii) FIRL-100 THz molecular-gas laser (product of Edinburgh Instruments Ltd), and (iii) the FELBE THz free-electron laser. The spectrometer is equipped with Ga:Ge and n-InSb bolometers. The lowest temperature available for EMR experiments is 1.5 K.</p>
FIELD RANGE	Up to 70 T
TEMPERATURE RANGE	Down to 1.5 K
AVAILABLE FREQUENCY RANGES	0.1 – 9 THz
SOURCES	VDI microwave chains (0.1-0.5 THz), THz molecular-gas laser (0.4-3.5 THz), THz free-electron laser (1.2 – 9 THz)
SAMPLE SIZE	Ca 4x4x1 mm
SAMPLE HOLDER	Faraday configuration Voight configuration
SAMPLE ENVIRONMENT	⁴ He bath cryostat
TYPICAL EXPERIMENT	<p>Examples of ESR spectra in the quasi-1D chain material Cu-PM with alternating DM interaction in pulsed magnetic fields</p>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

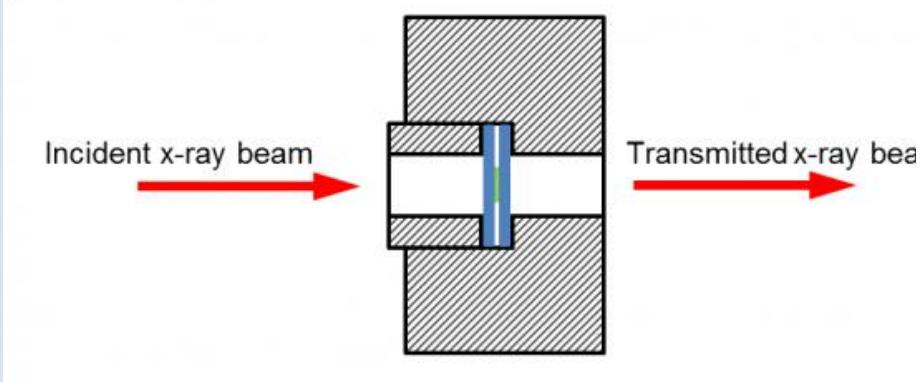
FEATURES	HZDR-HLD DRESDEN
	Frequency-field diagram of ESR excitations in the quasi-1D chain material Cu-PM with staggered DM interaction taken in magnetic fields up to 64 T at 1.5 K (left panel). Corresponding examples of ESR spectra (right panel).
PUBLICATIONS	<u>M. Ozerov et al., PRB 92, 241113 (R) (2015)</u> <u>F. Esser et al., Appl. Phys. Lett. 107, 062103 (2015)</u> <u>M. Ozerov et al., PRL 113, 157205 (2014)</u> <u>S. A. Zvyagin et al., PRB 83, 060409(R) (2011)</u> <u>O. Drachenko et al., PRB 79, 073301 (2009)</u> <u>S. A. Zvyagin et al., Rev. Sci. Instrum. 80, 073102 (2009)</u>

NUCLEAR MAGNETIC RESONANCE			
FEATURES	HZDR-HLD DRESDEN	LNCMI-GRENOBLE	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Hannes KÜHNE hannes.kuhne@hzdr.de	Dr. Mladen HORVATIC mladen.horvatic@lncmi.cnrs.fr Dr. Marc-Henri JULIEN marc-henri.julien@lncmi.cnrs.fr Dr. Steffen KRÄMER steffen.kramer@lncmi.cnrs.fr Dr. Hadrien MAYAFFRE hadrien.mayaffre@lncmi.cnrs.fr	Dr. Nicolas BRUYANT nicolas.bruyant@lncmi.cnrs.fr
FIELD RANGE	Up to 70 T	Up to 36 T	Up to 58 T
TEMPERATURE RANGE	2.0 – 300 K	Variable temperature for solid state physics NMR: 1.3 K to 300 K with ⁴ He variable temperature insert, 350 mK to 4.2 K with ³ He variable temperature insert. 40 mK to 1.0 K with ³ He/ ⁴ He dilution refrigerator. Room temperature (regulated) for high resolution NMR for chemistry.	1.5 – 300 K
SAMPLE SIZE	<10 mm ³ to avoid spectral broadening	Solid state physics NMR: < 10 mm ³ , almost any sample can be accommodated. High resolution NMR for chemistry: < 1 cm ³ , almost any sample can be accommodated.	Powders, liquids or single crystals. < 10 mm ³ Minimum sample sized limited by sensitivity. The samples can be mounted with a defined orientation
RESOLUTION	10 ¹⁷ ¹ H spins	Solid state physics NMR: 50 ppm / 1 mm ³ at variable magnetic field (< 10 ppm for single-scan recordings). High resolution NMR for chemistry (ferroshim and spin-lock): 20 ppm / 1 cm ³ at fixed magnetic field (< 10 ppm for single-scan recordings)	
LIMITATIONS			Nucleus with short T1

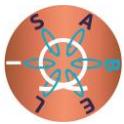


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

FEATURES	HZDR-HLD DRESDEN	LNCMI-GRENOBLE	LNCMI-TOULOUSE
TYPICAL EXPERIMENT	<p>NMR 10 – 3000 MHz with at least 200 W pulse power</p> <p>NMR data is recorded in the maximum regime of the field pulse during a time window of several ms, typically.</p> <p>Several FID or echo signals can be recorded during one field pulse.</p>	<p>Variable frequency NMR for any NMR active nucleus up to 1.5 GHz:</p> <p>Magnetic field and/or temperature dependence of NMR spectra as well as longitudinal (T_1) and transverse (T_2) NMR relaxation.</p> <p>High resolution NMR spectra at fixed field (ferroshim and spin-lock).</p> <p>CPMG multi-pulse experiments.</p>	<p>NMR from 200 MHz to 1200 MHz with 500 W pulse power, up to 3.2 GHz with 200 W</p> <p>Single scan NMR looking for phase transition in the spectrum.</p> <p>Knight shift, chemical shift determination</p>
SAMPLE HOLDER	<p>The NMR coil is mounted on a platform with 10 mm diameter.</p>	<p>Tailored NMR coils for optimized sensitivity.</p> <p>Top-tuning and bottom-tuning configuration.</p> <p>Goniometer option.</p> <p>High pressure cell option (< 2.4 GPa).</p> <p>Further details and drawings available upon request.</p>	<p>NMR coil is directly wound around the sample for maximum sensitivity</p>

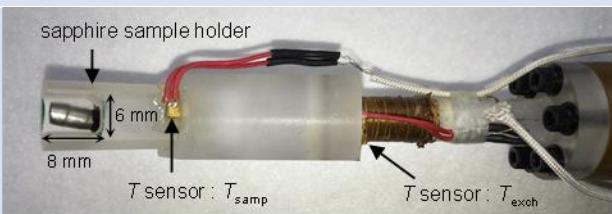


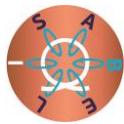
FREE ELECTRON LASER


FEATURES	HFML NIJMEGEN
LOCAL CONTACT	Dr. Hans ENGELKAMP Hans Engelkamp@ru.nl Dr. Peter CHRISTIANEN peter.christianen@ru.nl
FIELD RANGE	Up to 33 T DC
SPECTRAL RANGE	Different Free Electron Lasers (www.ru.nl/hfml-felixv) FELIX: 2 – 120 THz, FLARE: 0.25 – 3 THz
TEMPERATURE RANGE	Temperature range depends on sample holder and cryostat In general: 1.5 – 290 K
SAMPLE SIZE	< 5 mm lateral size, ~ 1 mm or less height
SENSITIVITY	Spectral resolution depends on the free electron laser used.
TYPICAL EXPERIMENT	Transmission experiment (Electron spin resonance or cyclotron resonance). Electrically detected magnetic resonance Optically detected magnetic resonance
SAMPLE HOLDER	Faraday configuration
SAMPLE ENVIRONMENT	⁴ He bath cryostat (cold finger or exchange gas)
PUBLICATIONS	M. Ozerov et al., Appl. Phys. Lett. 110, 094106 (2017) P. Gogoi et al., PRL 119, 146603 (2017) B. Bernáth et al., PRB 105, 205204 (2022) P. Stremoukhov et al., Results Phys. 57, 107377 (2024)

X-RAY SPECTROSCOPY

FEATURES	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Fabienne DUC – LNCMI fabienne.duc@lncmi.cnrs.fr Dr. Raffaella TORCHIO – ESRF rafaella.torchio@esrf.fr
PROPOSAL SUB-MISSION PROCEDURE	Before writing a proposal, it is mandatory to contact well in advance both local contacts to evaluate the feasibility of the experiment. Proposal submission via ESRF website: https://www.esrf.fr/home/UsersAndScience/Applying.html See: https://www.esrf.fr/home/UsersAndScience/Apply-for-beamtime/proposal-types-and-deadlines.html for next proposal deadline and subcommittee meetings.
FIELD RANGE	Up to 30 T
TEMPERATURE RANGE	2 - 300 K
SAMPLE SIZE	Single crystals: polished or thinned samples $100 \mu\text{m} < \text{diameter} < 500 \mu\text{m}$, thickness must be homogeneous ($20 \mu\text{m}$ or less) adjusted to the probed edges, surfaces without roughness are preferred. The samples are mounted with a defined orientation.
TYPICAL EXPERIMENT	High pulsed magnetic fields XAS and XMCD in transmission mode on a dispersive X-ray beamline Valence fluctuations (XAS) Element-selective magnetometry (XMCD)
SAMPLE HOLDER	<p>Drawing of the sample mounting in the sample holder for XAS and XMCD in pulsed magnetic fields Sample (drawn in green) is sandwiched between two nanopolycrystalline diamond (NPD) windows ($\varnothing 2 \text{ mm}$, $100 \mu\text{m}$ thickness, drawn in blue), themselves mounted</p>



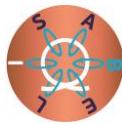

FEATURES	LNCMI-TOULOUSE
	into a cylindrical plastic holder (\varnothing 9 mm) and maintained by a small plastic cap (\varnothing 2 mm). Sample is glued with wax on one of the NPD windows.
PUBLICATIONS	High field XMCD study in a strongly anisotropic ferrimagnet: S. Yamamoto et al., ORB 109, 094404 (2024) Description of acquisition scheme: C. Strohm et al., J. Synchrotron Rad. 18, 224 (2011) XAS and XMCD in pulsed magnetic field on ID24: O. Mathon et al., J. Synchrotron Rad. 14, 409 (2007)

NEUTRON DIFFRACTION

FEATURES	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Fabienne DUC – LNCMI: fabienne.duc@lncmi.cnrs.fr Dr. Frédéric BOURDAROT - CEA and ILL: bourdarot@ill.fr
PROPOSAL SUBMISSION PROCEDURE	<p>Before writing a proposal, it is mandatory to contact well in advance both local contacts to evaluate the feasibility of the experiment.</p> <p>Proposal submission via ILL website: https://www.ill.eu/users/applying-for-beamtime</p> <p>See: https://www.ill.eu/users/applying-for-beamtime/important-dates for next proposal deadline and subcommittee meetings.</p> <p>Be careful: deadlines for applying for beamtime are different from EMFL deadlines and can change from one year to another.</p> <p>In general, a call for proposals is launched twice a year (deadlines in February and September).</p> <p>Users with accepted proposal must get in touch with both local contacts as early as possible to prepare the experiment (to orientate the sample and mount it on the sample holder before the neutron beamtime).</p>
FIELD RANGE	Up to 40 T
TEMPERATURE RANGE	2 – 300 K
SAMPLE SIZE	Single crystals Maximum available volume: 8 x 6 x 6 mm ³ The samples are mounted with a defined orientation Samples must be pre-orientated before neutron experiment
TYPICAL EXPERIMENT	Magnetic structure in high pulsed magnetic fields.
SAMPLE HOLDER	<p>sapphire sample holder 6 mm 8 mm T sensor : T_{samp} T sensor : T_{exch}</p> <p>Sapphire sample holder for neutron diffraction with typical sample inside. Sample is glued with black stycast.</p>



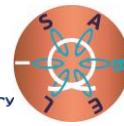
FEATURES	LNCMI-TOULOUSE
SAMPLE ENVIRONMENT	Sample in vacuum on a sapphire sample holder. Sapphire cold finger. Cooling by conduction. Gaseous helium from 300 K down to 2 K
PUBLICATIONS	Spin-density wave in URu ₂ Si ₂ : W. Knafo et al., Nat. Commun. 7, 13075 (2016) 40-T cryomagnet and device description: F. Duc et al., Rev. Sci. Instrum. 89, 053905 (2018) Magnetic structures in spin-1/2 dimer system: A. Gazizulina et al., PRB 104, 064430 (2021)


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

MEGAGAUSS FACILITY

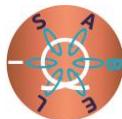
FEATURES	LNCMI-TOULOUSE
LOCAL CONTACT	Dr. Oleksiy DRACHENKO oleksiy.drachenko@lncmi.cnrs.fr Dr. Oliver PORTUGALL oliver.portugall@lncmi.cnrs.fr
FIELD RANGE	150 T, 6 μs single pulse 40 T damped oscillation
TEMPERATURE RANGE	5.0 – 300 K for optical measurement 2.0 – 300 K for magnetization
SAMPLE SIZE	1 mm (typically)
TYPICAL EXPERIMENT	Optical spectroscopy, visible to mid-infrared Faraday rotation Magnetization with inductive pickup coils
PUBLICATIONS	Field generation: O. Portugall et al., J. Phys. D: Appl. Phys. 32, 2354 (1999) Optical spectroscopy: A. Miyata et al., Nature Phys. 11, 582 (2015) ; R. J. Nicholas et al., PRL 111, 096802 (2013) Magnetization: A. Miyata et al., PRB 101, 054432 (2020)

LEVITATION


FEATURES	LNCMI-GRENOBLE
LOCAL CONTACT	Dr. Eric BEAUGNON eric.beaugnon@lncmi.cnrs.fr
FIELD RANGE	Up to 37 T, Grad B2 up to 4000 T/m ²
TEMPERATURE RANGE	Near room temperature
SAMPLE SIZE	From 0.1 mm to 1 cm
TYPICAL EXPERIMENT	Levitation of different diamagnetic materials including water, solutions, diamagnetic solids.
SAMPLE HOLDER	In situ instrumentation of oscillations/displacement of samples, far range video up to 200 and possibly 1000 images/s
SAMPLE ENVIRONMENT	Upon request
PUBLICATIONS	E. Beaugnon et al., Nature 349, 470 (1991)

HIGH TEMPERATURE MAGNETISM

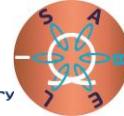
FEATURES	LNCMI-GRENOBLE
LOCAL CONTACT	Dr. Eric BEAUGNON eric.beaugnon@lncmi.cnrs.fr
FIELD RANGE	Up to 37 T, Grad B2 up to 4000 T/m ²
TEMPERATURE RANGE	Up to 1600 °C
SAMPLE SIZE	From 0.1 mm to 5 mm
TYPICAL EXPERIMENT	M(T) to evidence phase transformations
SAMPLE HOLDER	High temperature non-reactive refractory material
SAMPLE ENVIRONMENT	Air, gas, vacuum. From below 1 T to 30 T. Joule (high field) or laser heating (low field)
PUBLICATIONS	J. Wang et al., Rev. Sci. Instrum. 86, 025102 (2015)



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

ORIENTATION, TEXTURATION

FEATURES	LNCMI-GRENOBLE
LOCAL CONTACT	Dr. Eric BEAUGNON eric.beaugnon@lncmi.cnrs.fr
FIELD RANGE	Up to 37 T, Grad B2 up to 4000 T/m ²
TEMPERATURE RANGE	Near room temperature
SAMPLE SIZE	From 0.1 mm to 2 cm
TYPICAL EXPERIMENT	Alignment of particles in a matrix
SAMPLE HOLDER	Closed vessel, any shape within 2 cm.
SAMPLE ENVIRONMENT	Upon request
PUBLICATIONS	B. Michaud et al., Materials Transactions, JIM, 41,8 (2000)

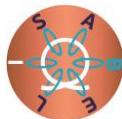

BROWSE BY AVAILABLE EQUIPMENT

Additional information and contact: ilo-emfl@lncmi.cnrs.fr

EQUIPMENT	HFML NIJMEGEN	LNCMI GRENOBLE	HZDR-HLD DRESDEN	LNCMI TOULOUSE
MAGNETS				
CONTINUOUS FIELD MAGNETS	100	100		
PULSED FIELD MAGNETS			101	101
CRYOSTATS				
⁴ HE CRYOSTATS (1.5 – 300 K)	102	102	102	102
³ HE CRYOSTATS (DOWN TO 300 mK)	103	103	103	103
DILUTION ³ HE – ⁴ HE REFRIGERATOR (DOWN TO 30 – 100 mK)	104	104	104	104
POWER SUPPLY FOR PULSED MAGNETS				
CAPACITOR BANKS			105	105
THERMOSTAT				
300-1000 K THERMOSTAT		107		
UNIAXIAL STRAIN				
	108			
HIGH HYDROSTATIC PRESSURE				
1.4 – 4 GPa HIGH HYDROSTATIC PRESSURE				109
WORKSHOPS				
CRYOGENICS				110
(MICRO-) MECHANICS	111	111	112	112
WIRE FABRICATION				113
MAGNET FABRICATION	114	114	115	115

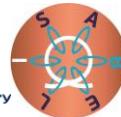
This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

MAGNETS


CONTINUOUS MAGNETIC FIELD MAGNETS

LOCATION	MAX FIELD (T)	BORE SIZE (mm)	HOMOGENEITY (1 cm DSV)
LNCMI-GRENOBLE	6	284	450
LNCMI-GRENOBLE	10	376	250
LNCMI-GRENOBLE	13	130	30
LNCMI-GRENOBLE	20	170	600
LNCMI-GRENOBLE	25	50	1300
HFML NIJMEGEN	30	50	640
LNCMI-GRENOBLE	31	50	850
HFML NIJMEGEN	33	32	940
HFML NIJMEGEN	33	32	1130
LNCMI-GRENOBLE	36	34	800
HFML NIJMEGEN	37.5	32	964
HFML NIJMEGEN	38	32	964

100


BROWSE BY AVAILABLE EQUIPMENT

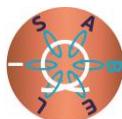
MAGNETS

PULSED MAGNETIC FIELD MAGNETS

LOCATION	MAX FIELD (T)	BORE SIZE (mm)	PULSE DURATION (ms)
HZDR-HLD DRESDEN	51	24	75
HZDR-HLD DRESDEN	60	40	1200
LNCMI-TOULOUSE	60	13	250
LNCMI-TOULOUSE	60	28	500
HZDR-HLD DRESDEN	65	20	25
HZDR-HLD DRESDEN	70	24	150
LNCMI-TOULOUSE	70	13	200
LNCMI-TOULOUSE	80	13	80
LNCMI-TOULOUSE	80	13	30 (Inner coil)/ 900 (outer coil)
LNCMI-TOULOUSE	90	8	30 (Inner coil)/ 900 (outer coil)
HZDR-HLD DRESDEN	85/95	16/12	10 (Inner coil)/ 120 (outer coil)
LNCMI-TOULOUSE	170+ (semi-destructive monospire)	8	0.008

CRYOSTATS

⁴HE CRYOSTATS – 1.5 K TO 300 K – TOP LOADING


LOCATION	MAGNETS (T)	Ø MAGNET BORE (mm)	Ø SAMPLE SPACE (mm)	FLANGE	DISTANCE FLANGE/FIELD CENTRE (mm)	DEPTH (mm)
LNCMI-TOULOUSE	60	28	20	KF25	820	870
	70	13	7	KF25	820	870
	80	13	7	KF25	955	1030
	90 – 100	8.5	4	KF25	955	1055
LNCMI-GRENNOBLE	Bath cryostat (37 T)	34	24	DN 100 ISO-K DN 50 ISO-KF DN 40 ISO-KR		1531
	Bath cryostat (31 T)	50	38	DN 100 ISO-K DN 50 ISO-KF DN 40 ISO-KR		1523 and 1590
	Bath cryostat (31 T)	50	38	Tube compression fitting 39.8 mm		1653
	VTI (37 T)	34	15.8	DN 40 ISO-KF		1714
	VTI (31 T)	34	30	DN 40 ISO-KF		1495
HFML-NIJMEGEN	30	50	**	KF40	1565	*
	33	32	**	KF40	168.5	*
	38	32	**	KF40	196.5	*
HLD-DRESDEN	0.5 – 300 K Technical details upon request					

* depends on cryostat – in general some space (<10 mm) below field center

** depends on experiment: same for 33 and 38 T magnets: transport LCC 20, max. sample size 4 x 4 mm²

*** MCK model – Leiden cryogenics

CRYOSTATS

³HE CRYOSTATS – DOWN TO 0.3 K – TOP LOADING

LOCATION	MAGNETS (T)	BASE T (K)	Ø SAMPLE SPACE (mm)	FLANGE	DISTANCE FLANGE/FIELD CENTRE (mm)	DEPTH (mm)
LNCMI-TOULOUSE	60	0.3	10	KF25	1607	1629
	70	0.35	4	KF25	1063	1088
	80	0.35	4	KF25	1063	1088
	90-100	0.45	4	KF40	1245	1290

LOCATION	SAMPLE ENVIRONMENT AND MAGNETIC FIELD	Ø MAGNET BORE (mm)	Ø SAMPLE SPACE (mm)	FLANGE	DEPTH TOTAL / FLANGE - CONE (mm)
LNCMI-GRENOBLE	Sample in liquid (37 T)	34	16	DN 40 ISO-KF	1709 / 1034
	Sample in liquid (31 T)	50	30	DN 40 ISO-KF	1665 / 1018
	Sample in vacuum (37 T)	34	14		Upon request
	Sample in vacuum (31 T)	50	14		Upon request

LOCATION	MAGNETS (T)	BASE T (K)	Ø SAMPLE SPACE (mm)	FLANGE	DISTANCE FLANGE/FIELD CENTRE (mm)	DEPTH (mm)
HFML-Nijmegen	30	0.3	Contact local contact	KF40	1565	Contact local contact
	33	0.3		KF40	168.5	
	38	0.3		KF40	196.5	


LOCATION	
HLD-Dresden	0.5 – 300 K Technical details upon request

* depends on cryostat – in general some space (<10 mm) below field center

** depends on experiment: same for 33 and 38 T magnets: transport LCC 20, max. sample size 4 x 4 mm²

*** MCK model – Leiden cryogenics

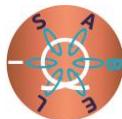
CRYOSTATS

DILUTION ^3He – ^4He REFRIGERATOR

LOCATION	MAGNETS (T)	BASE T (K)	Ø SAMPLE SPACE (mm)	SAMPLE LOADING
LNCMI-TOULOUSE	60	0.07	7	bottom loading
	60	0.07	3	top loading
	16 (Superconducting)	0.008	37	top loading

LOCATION	MAGNETS (T)	BASE T (K)	Ø SAMPLE SPACE (mm)	SAMPLE LOADING
HLD-DRESDEN	60	0.05	10	bottom loading

LOCATION	MAGNETS (T)	BASE T (K)	Ø MAGNET BORE (mm)	Ø SAMPLE SPACE (mm)	SAMPLE LOADING
LCMI-GRENOBLE	37	20	34	16	top loading
	31	20	50	24	top loading


LOCATION	MAGNETS (T)	BASE T (K)	Ø SAMPLE SPACE (mm)	SAMPLE LOADING
HFML-Nijmegen	33	<0.05 K	Contact local contact	Contact local contact
	38	<0.05 K	Contact local contact	Contact local contact

* depends on cryostat – in general some space (<10 mm) below field center

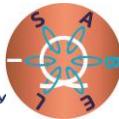
** depends on experiment: same for 33 and 38 T magnets: transport LCC 20, max. sample size 4 x 4 mm²

*** MCK model – Leiden cryogenics

POWER SUPPLY FOR PULSED MAGNETS

HLD – DRESDEN

CAPACITOR BANK	NUMBER OF MODULES	LOCATED
50 MJ	20	HZDR-HLD
14 MJ	10	HZDR-HLD
0.8 MJ	1	HIBEF


50 MJ

SPECIAL MODULES	NUMBER OF MODULES	CAPACITANCE (mF)	MIN. PULSE RISE TIME (mS)	MAX. CURRENT (kA)
2.88 MJ	15	10 – 150	7.5 – 8.5	350
1.44 MJ	4	5 – 15	2.5 – 3.0	100
0.9 MJ	1	3.125	0.85	100

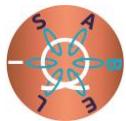
This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

POWER SUPPLY FOR PULSED MAGNETS

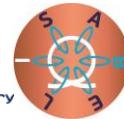
HLD-DRESDEN

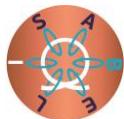
14 MJ

SPECIAL MODULES	NUMBER OF MODULES	CAPACITANCE (mF)	MIN. PULSE RISE TIME (mS)	MAX. CURRENT (kA)
1.44 MJ	9	5 – 30	2.5 – 3.0	200
0.9 MJ	1	3.125	0.85	100
0.4 MJ				
SPECIAL MODULES	NUMBER OF MODULES	CAPACITANCE (mF)	MIN. PULSE RISE TIME (mS)	MAX. CURRENT (kA)
0.8 MJ	1	2.8	0.003	100


LNCMI-TOULOUSE

CAPACITOR BANK	NUMBER OF MODULE	CAPACITANCE/MODULE (mF)	MIN PULSE RISE TIME (mS)	MAX CURRENT (kA)	MOBILE
21 MJ	6	12.5	23	100	N
6 MJ	2	10	5	150	Y
1.6 MJ	1	5.6	4.7	40	N
1.15 MJ	2	2	4	33	Y


Pictures of one 3.5 MJ module of the 14 MJ generator


THERMOSTAT

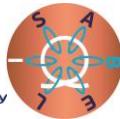
LOCATION	MAGNETS (T)	TEMPERATURE RANGE (K)	Ø MAGNET BORE (mm)
LNCMI-GRENOBLE	31	300 – 1 000	50

UNIAXIAL STRAIN

FEATURES		HFML NIJMEGEN
LOCAL CONTACT		Dr. Steffen WIEDMANN steffen.wiedmann@ru.nl
FIELD RANGE		Up to 30 T
TEMPERATURE RANGE	0.3 K - 300 K (maximum field 30 T) - ⁴ He cryostat (heating element) - ³ He cryostat	
TYPE	Electrical resistance under uniaxial strain (elasto-resistance) tensile and compressive CS 100	Thermal expansion and magnetostriiction under uniaxial strain Applied force: from 40 up to 75 N max. uniaxial stress: 3 kbar for cuboid sample of $(0.5 \text{ mm})^2$ cross section
SAMPLE SIZE	1600 μm * 200 μm * 50 μm Smaller samples – bowtie configuration	Height < 2 mm; diameter < 3 mm (L x W) = 2 mm x 2mm (max.)
TYPICAL EXPERIMENT	Resistance for fixed strain as a function of magnetic field at different temperature Elastoresistance at constant T, B	Magnetostriiction Thermal expansion
SAMPLE HOLDER	Sample is fixed epoxy, electrical contacts are attached	Sample clamped
SAMPLE ENVIRONMENT	Gaseous helium from 300 K down to 1.2 K, ³ He below	
DEVICE SPECIFICATIONS	Razorbill instruments : https://razorbillinstruments.com/ Kuechler innovative measurement technology - http://www.dilatometer.info/	

HIGH HYDROSTATIC PRESSURE

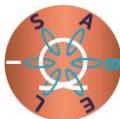
LNCMI-TOULOUSE


LOCATION	GASKET	OVERALL DIMENSIONS (mm)	Ø SAMPLE SPACE (mm)	MAXIMUM PRESSURE (GPa)	TYPE OF MEASUREMENTS
LNCMI-TOULOUSE	PET	Ø = 18 H = 78	Ø = 1.2 H = 0.4	1.4	Magnetotransport
	Pyrophyllite	Ø = 15 H = 45	Ø = 1 H = 0.1	4	Magnetotransport

HZDR-HLD DRESDEN

LOCATION	GASKET	OVERALL DIMENSIONS (mm)	Ø SAMPLE SPACE (mm)	MAXIMUM PRESSURE (GPa)	TYPE OF MEASUREMENTS
HZDR-HLD DRESDEN	Cube & NiCrAl	Ø = 25 H = 62	Ø = 5	2	NMR

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106



WORKSHOPS: CRYOGENICS

LNCMI-TOULOUSE

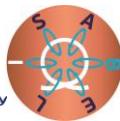
- Machining: numeric and conventional mills and lathes
- Sheet metal work machinery
- Tig welding stations, silver brazing station, bonding
- Sintering: controlled atmosphere furnace
- Tests: leak detector, RGA, lakeshore temperature controllers, Labview, origin...
- Vacuum production: fixes and mobiles vacuum stations equipped with scroll, vane, turbo-molecular and diffusion pumps.
- Helium liquefier: pulse tube cryo-generators, helium compressors, gas bag + high pressure cylinders recovery

WORKSHOPS: (MICRO-) MECHANICS

HFML NIJMEGEN

- 3 lathes
- 2 milling machines
- Floor standing pillar drill
- Brazing

LNCMI-GRENOBLE

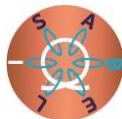


- Scientific instrumentation design and machining

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

WORKSHOPS: (MICRO-) MECHANICS

HZDR-HLD DRESDEN

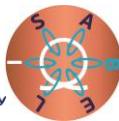

- Fully equipped workshop

LNCMI-TOULOUSE

- Digital lathes
- Drill press
- Milling machines for metals and glass epoxy G10
- Column drill
- Micromechanics machines

WORKSHOPS: WIRE FABRICATION

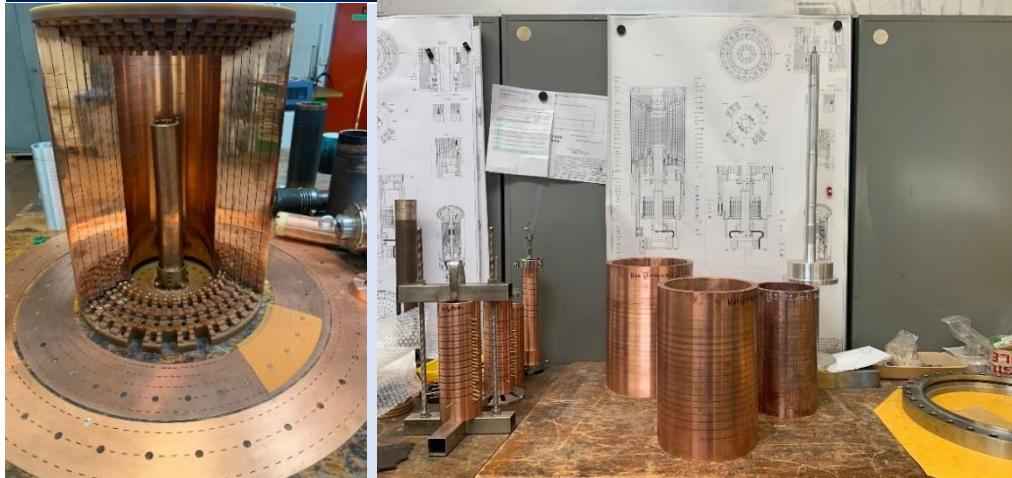
LNCMI-TOULOUSE



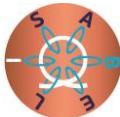
- 2 draw-benches (300 kN, L = 6 m; 100 kN, L = 16.5 m)
- Drawing bull-block (40 kN, d = 600 mm)
- Wire-drawing machine (10 kN, d = 300 mm)
- cylindrical drawing dies (from 40 mm to 0.2 mm)
- Turk-head shaping die
- Dynamic (varying speed, L = 3 m) or static
- Furnaces (L = 1 m) under neutral atmosphere ($T_{max} = 1150$ °C)
- Tensile test machine (100 kN, T = +20 °C and -196 °C)


This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

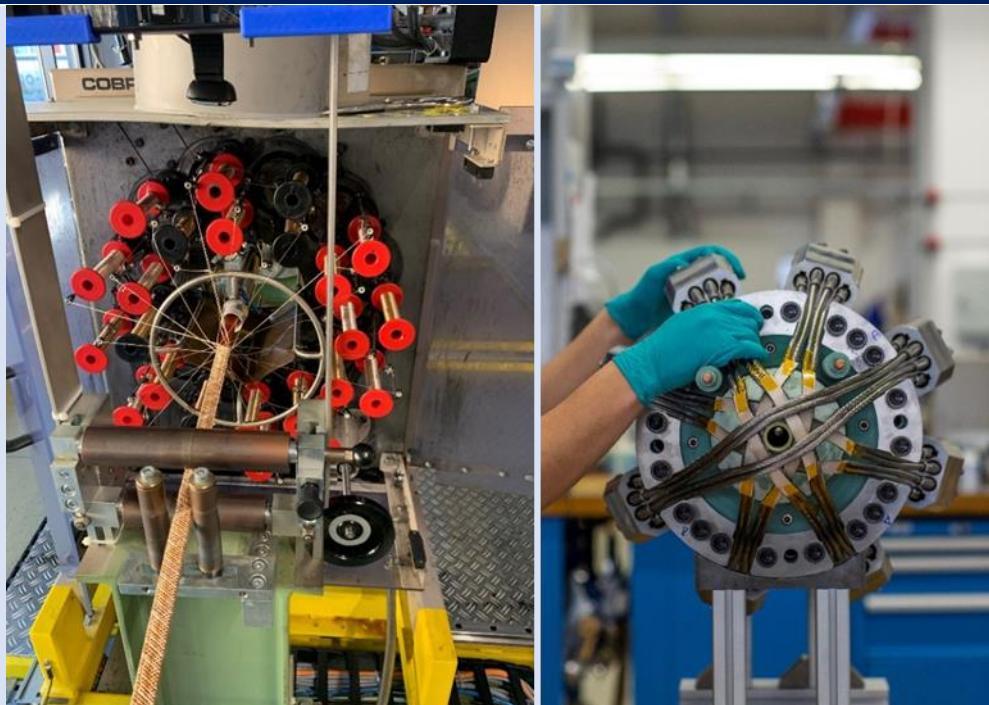
EMFL
European Magnetic Field Laboratory


WORKSHOPS: MAGNET FABRICATION

HFML NIJMEGEN


- Tensile testing machine 30 kN
- Hydraulic roll frame press 2000 kN
- Hydraulic press 300 kN

LNCMI GRENOBLE

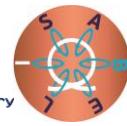

- Helical coil classical and spark erosion machining
- Epoxy coil impregnation

WORKSHOPS: MAGNET FABRICATION

HZDR-HLD DRESDEN

- Fully equipped magnet fabrication workshop

LNCMI-TOULOUSE




- COIL WINDING TOOLS (UP TO 1m DIAMETER AND 2m LONG COILS)– POSSIBILITY TO ADD HIGH STRENGTH POLYMER FIBERS FOR REINFORCEMENT AND/OR COOLING CHANNELS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

CONCLUSION

This EMFL Industrial Skill Map was realized as part of European project ISABEL.

One of the great challenges of society is **innovation through the development of new and advanced materials**. Such tailored materials are needed in all key-technological areas, from renewable energy concepts, through next generation data storage to biocompatible materials for medical applications and many of these future materials will be synthesized on a nano-scale. In order to reach these goals, state-of-the-art analytical tools are needed. High magnetic fields are one of the most powerful tools available to scientists for the study, modification and control of states of matter, and in order to compete on the global scale, Europe needs state-of-the-art high magnetic field facilities which provide the highest possible fields (both continuous and pulsed) for its many active and world-leading researchers.

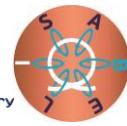
The ISABEL project aims to strengthen the long-term sustainability of the EMFL through the realization of three objectives:

- enlargement **the EMFL structure and build a great community by improving several organisational aspects** (such as data management, outreach and access procedures);
- bridge the gap with industry **to strengthen the socio-economic impact of the EMFL**;
- strengthening **of the role of high magnetic field research in Europe**.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871106. Any dissemination of results reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

More information about ISABEL project you can find on ISABEL website:

<https://emfl.eu/isabel/h2020-project/>



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 871106

European Magnetic Field Laboratory

Our online communication channels:

www.linkedin.com/in/ilo-emfl

<https://emfl.eu/>

2022 ISABEL EUROPEAN PROJECT

UPDATED 2025

EMFL