Infrared Spectroscopy.

FEATURES TOULOUSE NIJMEGEN GRENOBLE
Local Contact

P.Plochocka

Hans Engelkamp

Milan Orlita

Field range 0 ... 80 T 0 ... 33 T 0 ... 36 T
Spectral range Si CCD, ~350nm - 950nm
InGaAs array detectors: 950 - 1700 nm or 1000 - 2200nm.
10-3000 cm-1 (Bruker IFS 113v) identical to FIR, MIR and NIR ranges of the Bruker Vertex 80v spectrometer (5-10 000 cm⁻¹)
Temperature range 1.2 - 290 K 1.3 - 50 K 1.5 – 4.2 K (reflectivity also at 77K and RT)
Sample size < 3 mm lateral size,~ 1 mm or less height
(other arbitrarily shaped samples can also be accommodated)
minimum sample sized limited by beam size (1mm)
Space for circular polarization optics is available
88x3 mm3 or smaller Disc-shaped, maximal dimensions Ø5 mm and height 5 mm,
samples with other (but smaller than disc indicated) shapes can also be accommodated
Sensitivity Usually limited by spectral resolution of the spectrometer, most commonly used 0.3 m focal length with 150, 300 or 600 grooves/mm.
Resolution ~0.8-0.2nm.
Longer spectrometer can be also made available.
1% Down to 0.1 % of the relative change with the magnetic field
Typical experiment Transmission spectroscopy Magneto-transmission in Faraday or Voight configuration Magneto-transmission (absolute, relative)
Magneto-reflectivity (relative)
Sample Holder
Drawing of the sample holder for absolute magneto-transmission experiments (for sample up to Ø5 mm)
Sample environment Gaseous helium from 300K down to 4K, liquid helium below Helium exchange gas Sample in the helium exchange gas
Examples Sample: transition metal dichalcogenides monolayers: PhysRevB 93, 165412 (2016)
Metal halide perovskites: Nature Physics 11, 582 (2015)
Energy and Environmental Science 9,962 (2016)
Energy and Environmental Science 10, 1358 (2017)
ACS Energy Letters 2, 1621 (2017)
Z. Wang, J. Wu, W. Yang, A.K. Bera, D. Kamenskyi, A.T.M.N. Islam, S. Xu, J.M. Law, B. Lake, C. Wu and A. Loidl, "Experimental Observation of Bethe Strings", Nature 2018, 554, 219.
I. Kézsmárki, D. Szaller, S. Bordács, V. Kocsis, Y. Tokunaga, Y. Taguchi, H. Murakawa, Y. Tokura, H. Engelkamp, T. Rõõm and U. Nagel, "One-Way Transparency of Four-Coloured Spin-Wave Excitations in Multiferroic Materials", Nat. Commun. 2014, 5, 3203.
U. Nagel, R.S. Fishman, T. Katuwal, H. Engelkamp, D. Talbayev, H.T. Yi, S.W. Cheong and T. Rõõm, "Terahertz Spectroscopy of Spin Waves in Multiferroic Bifeo3 in High Magnetic Fields", Phys. Rev. Lett. 2013, 110, 257201.
B.N. Murdin, J. Li, M.L.Y. Pang, E.T. Bowyer, K.L. Litvinenko, S.K. Clowes, H. Engelkamp, C.R. Pidgeon, I. Galbraith, N.V. Abrosimov, H. Riemann, S.G. Pavlov, H.W. Hübers and P.G. Murdin, "Si:P as a Laboratory Analogue for Hydrogen on High Magnetic Field White Dwarf Stars", Nat. Commun. 2013, 4, 1469.
Graphene-based materials - Comptes Rendus Physique 14, 78 (2013)
Semimetals, Dirac matter - Nature Phys. 10, 233 (2014)
Semiconductors - Phys. Rev. B 80, 073303 (2009)
Molecular magnets - Nature Comm. 7, 10467 (2016)
Multiferroics - Phys. Rev. B 85, 134445 (2012)
Superconductors - Phys. Rev. B 94, 180503 (2016)
local contact: P.Plochocka
local contact: H.Engelkamp
local contact: M. Orlita