Sample Environment
4He Cryostats – 1.5K to 300K. Top Loading
| LNCMI TOULOUSE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Flange | Distance Flange/Field centre (mm) | Depth (mm) | 
|---|---|---|---|---|---|
| 60T Magnet | 28 | 20 | KF25 | 820 | 870 | 
| 70T Magnet | 13 | 7 | KF25 | 820 | 870 | 
| 80T Magnet | 13 | 7 | KF25 | 955 | 1030 | 
| 90-100T Magnet | 8.5 | 4 | KF25 | 995 | 1055 | 
| LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Flange | Depth (mm) | 
|---|---|---|---|---|
| Bath cryostat (37 T) | 34 | 24 | DN 100 ISO-K | 1531 | 
| Bath cryostat (31 T) | 50 | 38 | DN 100 ISO-K | 813 | 
| Bath cryostat (31 T) | 50 | 38 | Tube compression fitting 39.8 mm | 803 | 
| VTI (37 T) | 34 | 15.8 | DN 40 ISO-KF | 1714 | 
| VTI (31 T) | 34 | 30 | DN 40 ISO-KF | 1495 | 
3He Cryostats – Down to 0.3K. Top Loading
| LNCMI TOULOUSE | Base T° (K) | Ø Sample space (mm) | Flange | Distance Flange/Field centre (mm) | Depth (mm) | 
|---|---|---|---|---|---|
| 60T Magnet | 0.3 | 10 | KF25 | 1607 | 1629 | 
| 70T Magnet | 0.35 | 4 | KF25 | 1063 | 1088 | 
| 80T Magnet | 0.35 | 4 | KF25 | 1063 | 1088 | 
| 90-100T Magnet | 0.45 | 4 | KF40 | 1245 | 1290 | 
| LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Flange | Depth total / flange - cone(mm) | 
|---|---|---|---|---|
| Sample in liquid (37 T) | 34 | 16 | DN 40 ISO-KF | 1709 / 1034 | 
| Sample in liquid (31 T) | 50 | 30 | DN 40 ISO-KF | 1665 / 1018 | 
| Sample in vacuum (37 T) | 34 | 14 | please ask | |
| Sample in vacuum (31 T) | 50 | 14 | please ask | 
Dilution ³He – ⁴He refrigerator
| LNCMI TOULOUSE | Base T° (K) | Ø Sample zone (mm) | Sample loading | 
|---|---|---|---|
| 60T Magnet | 0.07 | 7 | bottom loading | 
| 60T Magnet | 0.07 | 3 | top loading | 
| 16T Superconducting Magnet | 0.008 | 37 | top loading | 
| HLD DRESDEN | Base T° (K) | Ø Sample zone (mm) | Sample loading | 
|---|---|---|---|
| 60T Magnet | 0.05 | 10 | bottom loading | 
| LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Base Temperature (mK) | Sample Loading | 
|---|---|---|---|---|
| 37 T | 34 | 16 | 20 | top loading | 
| 31 T | 50 | 24 | 20 | top loading | 
Thermostat
| LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Temperature Range (K) | Type of measurements | 
|---|---|---|---|---|
| 31 T | 50 | 300 – 1 000 | ? | 
High hydrostatic pressure
| LNCMI TOULOUSE | Gasket | Overall dimensions (mm) | Ø Sample Space (mm) | Type of measurements | Hydrostatic | Maximum pressure (GPa) | Local Contact | 
|---|---|---|---|---|---|---|---|
| * TA6V Clamp Zirconia Anvils | PET | Ø = 18 H = 78 | Ø = 1.2 H = 0.4 | Magnetotransport | 1.4 | ||
| * MP35N Clamp Composite ceramic Anvils | Pyrophyllite | Ø = 15 H = 45 | Ø = 1 H = 0.1 | Magnetotransport | 4 | 
| LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Maximum pressure (GPa) | |
|---|---|---|---|---|
Field-independent low-temperature thermometry.
Description:
Several methods of low-temperature thermometry are routinely applied, e.g.thick-film resistors based on RuO2. RuO2-based resistors have a good response in the temperature range 0.05 < T(K) < 1. The disadvantage: the respective output is influenced by an applied magnetic field.
At the HLD, two methods of low-temperature thermometry insensitive to the effects of magnetic fields are available. Coulomb Blockade Thermometry operates in the so-called weak Coulomb blockade regime and exploits single-electron tunneling effects. Field independence between 0.2 and 14 Tesla has been shown. As a primary thermometer, it can be used for calibration purposes.
In comparison, capacitance thermometry using sandwiched Ag- and Kapton foils on an Ag rod is less complex and yields robust, secondary thermometers. They can cover a wide temperature range, being insensitive to fields up to 45 T.
| FEATURES | DRESDEN | DRESDEN | 
|---|---|---|
| Method | Coulomb Blockade Thermometry | Capacitance Thermometry | 
| Temperature range | 50 < T (mK) < 300 | 20 < T (mK) < 2000 | 
| Sensitivity | 5% | |
| Probe | 																										 																 | 
																																																	 																 | 
																					
| Quality of the signal | 																										 																 | 
																																																	 																 | 
																					
| Typical experiment | Primary thermometer, calibration | Secondary thermometer | 
| Further information | Capacitance thermometer for use at low temperatures and high magnetic fields, T. P. Murphy, E. C. Palm, L. Peabody, and S. W. Tozer, Rev. Sci. Instrum. 72, 3462 (2001) |