Sample Environment
4He Cryostats – 1.5K to 300K. Top Loading
LNCMI TOULOUSE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Flange | Distance Flange/Field centre (mm) | Depth (mm) |
---|---|---|---|---|---|
60T Magnet | 28 | 20 | KF25 | 820 | 870 |
70T Magnet | 13 | 7 | KF25 | 820 | 870 |
80T Magnet | 13 | 7 | KF25 | 955 | 1030 |
90-100T Magnet | 8.5 | 4 | KF25 | 995 | 1055 |
LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Flange | Depth (mm) |
---|---|---|---|---|
Bath cryostat (37 T) | 34 | 24 | DN 100 ISO-K | 1531 |
Bath cryostat (31 T) | 50 | 38 | DN 100 ISO-K | 813 |
Bath cryostat (31 T) | 50 | 38 | Tube compression fitting 39.8 mm | 803 |
VTI (37 T) | 34 | 15.8 | DN 40 ISO-KF | 1714 |
VTI (31 T) | 34 | 30 | DN 40 ISO-KF | 1495 |
3He Cryostats – Down to 0.3K. Top Loading
LNCMI TOULOUSE | Base T° (K) | Ø Sample space (mm) | Flange | Distance Flange/Field centre (mm) | Depth (mm) |
---|---|---|---|---|---|
60T Magnet | 0.3 | 10 | KF25 | 1607 | 1629 |
70T Magnet | 0.35 | 4 | KF25 | 1063 | 1088 |
80T Magnet | 0.35 | 4 | KF25 | 1063 | 1088 |
90-100T Magnet | 0.45 | 4 | KF40 | 1245 | 1290 |
LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Flange | Depth total / flange - cone(mm) |
---|---|---|---|---|
Sample in liquid (37 T) | 34 | 16 | DN 40 ISO-KF | 1709 / 1034 |
Sample in liquid (31 T) | 50 | 30 | DN 40 ISO-KF | 1665 / 1018 |
Sample in vacuum (37 T) | 34 | 14 | please ask | |
Sample in vacuum (31 T) | 50 | 14 | please ask |
Dilution ³He – ⁴He refrigerator
LNCMI TOULOUSE | Base T° (K) | Ø Sample zone (mm) | Sample loading |
---|---|---|---|
60T Magnet | 0.07 | 7 | bottom loading |
60T Magnet | 0.07 | 3 | top loading |
16T Superconducting Magnet | 0.008 | 37 | top loading |
HLD DRESDEN | Base T° (K) | Ø Sample zone (mm) | Sample loading |
---|---|---|---|
60T Magnet | 0.05 | 10 | bottom loading |
LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Base Temperature (mK) | Sample Loading |
---|---|---|---|---|
37 T | 34 | 16 | 20 | top loading |
31 T | 50 | 24 | 20 | top loading |
Thermostat
LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Temperature Range (K) | Type of measurements |
---|---|---|---|---|
31 T | 50 | 300 – 1 000 | ? |
High hydrostatic pressure
LNCMI TOULOUSE | Gasket | Overall dimensions (mm) | Ø Sample Space (mm) | Type of measurements | Hydrostatic | Maximum pressure (GPa) | Local Contact |
---|---|---|---|---|---|---|---|
* TA6V Clamp Zirconia Anvils | PET | Ø = 18 H = 78 | Ø = 1.2 H = 0.4 | Magnetotransport | 1.4 | ||
* MP35N Clamp Composite ceramic Anvils | Pyrophyllite | Ø = 15 H = 45 | Ø = 1 H = 0.1 | Magnetotransport | 4 |
LNCMI GRENOBLE | Ø Magnet Bore (mm) | Ø Sample Space (mm) | Maximum pressure (GPa) | |
---|---|---|---|---|
Field-independent low-temperature thermometry.
Description:
Several methods of low-temperature thermometry are routinely applied, e.g.thick-film resistors based on RuO2. RuO2-based resistors have a good response in the temperature range 0.05 < T(K) < 1. The disadvantage: the respective output is influenced by an applied magnetic field.
At the HLD, two methods of low-temperature thermometry insensitive to the effects of magnetic fields are available. Coulomb Blockade Thermometry operates in the so-called weak Coulomb blockade regime and exploits single-electron tunneling effects. Field independence between 0.2 and 14 Tesla has been shown. As a primary thermometer, it can be used for calibration purposes.
In comparison, capacitance thermometry using sandwiched Ag- and Kapton foils on an Ag rod is less complex and yields robust, secondary thermometers. They can cover a wide temperature range, being insensitive to fields up to 45 T.
FEATURES | DRESDEN | DRESDEN |
---|---|---|
Method | Coulomb Blockade Thermometry | Capacitance Thermometry |
Temperature range | 50 < T (mK) < 300 | 20 < T (mK) < 2000 |
Sensitivity | 5% | |
Probe | ||
Quality of the signal | ||
Typical experiment | Primary thermometer, calibration | Secondary thermometer |
Further information | Capacitance thermometer for use at low temperatures and high magnetic fields, T. P. Murphy, E. C. Palm, L. Peabody, and S. W. Tozer, Rev. Sci. Instrum. 72, 3462 (2001) |