Sample Environment

⁴He Cryostats
³He Cryostats
Dilution ³He-⁴He refrigerator
Thermostats
High Pressure
Field-independent thermometry

4He Cryostats – 1.5K to 300K. Top Loading

LNCMI TOULOUSE Ø Magnet Bore (mm) Ø Sample Space (mm) Flange Distance Flange/Field centre (mm) Depth (mm)
60T Magnet 28 20 KF25 820 870
70T Magnet 13 7 KF25 820 870
80T Magnet 13 7 KF25 955 1030
90-100T Magnet 8.5 4 KF25 995 1055
LNCMI GRENOBLE Ø Magnet Bore (mm) Ø Sample Space (mm) Flange Depth (mm)
Bath cryostat (37 T) 34 24 DN 100 ISO-K 1531
Bath cryostat (31 T) 50 38 DN 100 ISO-K 813
Bath cryostat (31 T) 50 38 Tube compression fitting 39.8 mm 803
VTI (37 T) 34 15.8 DN 40 ISO-KF 1714
VTI (31 T) 34 30 DN 40 ISO-KF 1495

3He Cryostats – Down to 0.3K. Top Loading

LNCMI TOULOUSE Base T° (K) Ø Sample space (mm) Flange Distance Flange/Field centre (mm) Depth (mm)
60T Magnet 0.3 10 KF25 1607 1629
70T Magnet 0.35 4 KF25 1063 1088
80T Magnet 0.35 4 KF25 1063 1088
90-100T Magnet 0.45 4 KF40 1245 1290
LNCMI GRENOBLE Ø Magnet Bore (mm) Ø Sample Space (mm) Flange Depth total / flange - cone
(mm)
Sample in liquid (37 T) 34 16 DN 40 ISO-KF 1709 / 1034
Sample in liquid (31 T) 50 30 DN 40 ISO-KF 1665 / 1018
Sample in vacuum (37 T) 34 14 please ask
Sample in vacuum (31 T) 50 14 please ask

Dilution ³He – ⁴He refrigerator

LNCMI TOULOUSE Base T° (K) Ø Sample zone (mm) Sample loading
60T Magnet 0.07 7 bottom loading
60T Magnet 0.07 3 top loading
16T Superconducting Magnet 0.008 37 top loading
HLD DRESDEN Base T° (K) Ø Sample zone (mm) Sample loading
60T Magnet 0.05 10 bottom loading
LNCMI GRENOBLE Ø Magnet Bore (mm) Ø Sample Space (mm) Base Temperature (mK) Sample Loading
37 T 34 16 20 top loading
31 T 50 24 20 top loading

Thermostat

LNCMI GRENOBLE Ø Magnet Bore (mm) Ø Sample Space (mm) Temperature Range (K) Type of measurements
31 T 50 300 – 1 000 ?

High hydrostatic pressure

LNCMI TOULOUSE Gasket Overall dimensions (mm) Ø Sample Space (mm) Type of measurements Hydrostatic Maximum pressure (GPa) Local Contact
* TA6V Clamp Zirconia Anvils PET Ø = 18 H = 78 Ø = 1.2 H = 0.4 Magnetotransport 1.4
M. Nardonne
* MP35N Clamp Composite ceramic Anvils Pyrophyllite Ø = 15 H = 45 Ø = 1 H = 0.1 Magnetotransport 4
W. Knafo
LNCMI GRENOBLE Ø Magnet Bore (mm) Ø Sample Space (mm) Maximum pressure (GPa)

Field-independent low-temperature thermometry.

Description:

Several methods of low-temperature thermometry are routinely applied, e.g.thick-film resistors based on RuO2. RuO2-based resistors have a good response in the temperature range 0.05 < T(K) < 1. The disadvantage: the respective output is influenced by an applied magnetic field.

At the HLD, two methods of low-temperature thermometry insensitive to the effects of magnetic fields are available. Coulomb Blockade Thermometry operates in the so-called weak Coulomb blockade regime and exploits single-electron tunneling effects. Field independence between 0.2 and 14 Tesla has been shown. As a primary thermometer, it can be used for calibration purposes.

In comparison, capacitance thermometry using sandwiched Ag- and Kapton foils on an Ag rod is less complex and yields robust, secondary thermometers. They can cover a wide temperature range, being insensitive to fields up to 45 T.

FEATURES DRESDEN DRESDEN
Method Coulomb Blockade Thermometry Capacitance Thermometry
Temperature range 50 < T (mK) < 300 20 < T (mK) < 2000
Sensitivity 5%
Probe
Quality of the signal
Typical experiment Primary thermometer, calibration Secondary thermometer
Further information Capacitance thermometer for use at low temperatures and high magnetic fields, T. P. Murphy, E. C. Palm, L. Peabody, and S. W. Tozer, Rev. Sci. Instrum. 72, 3462 (2001)
local contact: Thomas Herrmannsdörfer